

Version Control

Version	Date	Description
1.0	16 December 2025	Final Published Version

Disclaimer

Energex's Distribution Annual Planning Report is prepared and made available solely for information purposes. While care was taken in the preparation of the information in this report, and it is provided in good faith, Energex accepts no responsibility or liability (including without limitation, liability to any person by reason of negligence or negligent misstatement) for any loss or damage that may be incurred by any person acting in reliance on this information or assumptions drawn from it, except to the extent that liability under any applicable Queensland or Commonwealth of Australia statute cannot be excluded.

It contains assumptions regarding, among other things, economic growth and load forecasts which may or may not prove to be correct. The forecasts included in the document involve analyses which are subject to significant uncertainties and contingencies, many of which are out of the control of Energex. Energex makes no representation or warranty as to the accuracy, reliability, completeness, or suitability for any particular purpose of the information in this document. All information should be independently investigated, reviewed, analysed, and verified, and must not be relied upon in connection with any investment proposal or decision. The information contained in this report is subject to annual review. Energex is obligated to publish future editions by 31st December, in accordance with the National Electricity Rules.

All financials presented in this document are correct at the time of writing and represent the existing organisational accounting treatment, which may be subject to change. Forecasted data is subject to ongoing variations.

Contact Information

Further information on Energex network management is available on our website: https://www.energex.com.au/our-network

GPO Box 1461 Brisbane QLD 4001 26 Reddacliff Street Newstead QLD 4006 Telephone 13 12 53 www.energex.com.au Energex Limited ABN 40 078 849 055

© Energex Limited

® Energex and Energex Positive Energy are registered trademarks of Energex Limited ABN 40 078 849 055

This work is copyright. Material contained in this document may be reproduced for personal, in-house, or non-commercial use, without formal permission or charge, provided there is due acknowledgement of Energex Limited as the source. Requests and enquiries concerning reproduction and rights for a purpose other than personal, in-house, or non-commercial use, should be addressed to the Manager Customer Advocacy, Energex, GPO Box 1461 Brisbane QLD 4001.

Contents

Exe	ecutive	Summary	1
1	Intro	ductionduction	5
	1.1	Foreword	5
	1.2	Network overview	5
	1.3	Peak demand	6
	1.4	Minimum demand	7
	1.5	Changes from previous year's DAPR	8
	1.6	DAPR enquiries	8
2	Corp	orate profile and asset management	10
	2.1	Corporate overview	10
		2.1.1 Vision, purpose, strategic areas of focus, and values	10
	2.2	Electricity distribution network	10
	2.3	Network operating environment	13
		2.3.1 Physical environment	13
		2.3.2 Shareholder and government expectations	13
		2.3.3 Public safety	14
		2.3.4 EQL health, safety, and environment management system	14
		2.3.5 Environmental commitments	15
		2.3.6 Legislative compliance	16
		2.3.7 Economic regulatory environment	16
	2.4	Asset management overview	17
		2.4.1 Best practice asset management	17
		2.4.2 Asset Management Policy	18
		2.4.3 Strategic Asset Management Plan (SAMP)	18
		2.4.4 Corporate Governance and Investment process	18
		2.4.5 Network risk and program optimisation	20
		2.4.6 Further information	20
3	Cust	omer and community engagement	22
	3.1	Overview	22
	3.2	Our engagement program	23
		3.2.1 Customer and community council and other forums	23
		3.2.2 Working with industry partners	23
		3.2.3 Community leader engagement	24
		3.2.4 Online engagement	24
		3.2.5 Our customer research program	24
	3.3	What we have heard	25
		3.3.1 Safety	25
		3.3.2 Affordability	25
		3.3.3 A secure supply – keeping the lights on	27
		3.3.4 A sustainable future	28
	3.4	Our customer strategy	30
4	Netw	vork forecasting	33
	4.1	Forecast assumptions	33
		4.1.1 Economic growth	33

		4.1.2 Solar PV	34
		4.1.3 Electric vehicles and energy (battery) storage systems	35
		4.1.4 Temperature sensitive load	35
	4.2	Zone substation and feeder maximum demand forecasts	36
		4.2.1 Zone substation forecasting methodology	37
		4.2.2 Distribution 11kV feeder forecasting methodology	39
		4.2.3 Sub-transmission 110kV and 132kV line forecasting methodology	39
		4.2.4 Sub-transmission 33kV line forecasting methodology	40
	4.3	System maximum demand forecast	40
		4.3.1 System demand forecast methodology	41
		4.3.2 Medium, high, and low case scenarios	42
5	Netw	ork planning framework	46
	5.1	Background	46
	5.2	Planning methodology	49
		5.2.1 Strategic planning	49
		5.2.2 Detailed network planning studies	49
	5.3	Key drivers for augmentation	50
		5.3.1 Demand forecast	51
		5.3.2 Asset age and condition	51
	5.4	Network planning criteria	51
		5.4.1 Value of customer reliability	52
		5.4.2 Value of Network Resilience (VNR)	53
		5.4.3 Safety Net	53
		5.4.4 Risk quantification and Customer Export Curtailment Value (CECV)	54
		5.4.5 Distribution networks planning criteria	54
		5.4.6 Consideration of distribution losses	55
	5.5	Plant thermal ratings	55
		5.5.1 Time of day	55
		5.5.2 Climate zones	56
		5.5.3 Overhead line ratings	58
		5.5.4 Power transformers	58
		5.5.5 Generators	59
		5.5.6 Switchgear & cable ratings	59
		5.5.7 Real time capacity monitoring ratings	59
	5.6	Voltage limits	
		5.6.1 Voltage levels	59
		5.6.2 Sub-transmission network voltages	59
		5.6.3 Distribution network voltage limits	60
		5.6.4 Low Voltage (LV) limits	60
		Maximum customer voltage variance	61
	5.7	Fault levels	
		5.7.1 Fault level analysis methodology	62
		5.7.2 Maximum fault level analysis	62
		5.7.3 Minimum fault level analysis	63
		5.7.4 Standard fault level limits	63
	5.8	Planning of customer connections	
		<u> </u>	50

	5.9	Large customer connections and embedded generators	64
	5.10	Joint planning	64
		5.10.1 Joint planning methodology	64
		5.10.2Role of Energex in joint planning	65
		5.10.3 Joint planning and joint implementation register	65
		5.10.4 Joint planning with Powerlink	65
		5.10.5 Joint planning with other DNSPs	66
		5.10.6Further information on joint planning	66
	5.11	Network planning – assessing system limitations	67
		5.11.1Overview of methodology to assess limitations	67
		5.11.2Bulk and zone substation analysis methodology assumptions	68
		5.11.3Sub-transmission line analysis methodology assumptions	68
		5.11.4Distribution feeder analysis methodology assumptions	68
6	Over	view of network limitations and recommended solutions	70
	6.1	Network limitations – adequacy, security, and asset condition	70
		6.1.1 Bulk and zone substation capacity limitations	70
		6.1.2 Sub-transmission and distribution feeder capacity limitations	70
		6.1.3 Network asset retirements and deratings	70
		6.1.4 Fault level limitations	70
		6.1.5 Embedded generating unit capacity limitations	70
	6.2	11kV primary overcurrent and backup protection reach limits	70
	6.3	Summary of emerging network limitations	71
	6.4	Regulatory Investment Test for Distribution (RIT-D) projects	
		6.4.1 Regulatory investment test projects – in progress and completed	71
		6.4.2 Foreseeable RIT-D projects	72
		6.4.3 Urgent or unforeseen projects	72
	6.5	Emerging network limitations maps	72
7	Dema	and management activities	75
	7.1	Demand management explained	75
	7.2	Integration of demand management into the planning process	75
	7.3	Energex's industry engagement document	77
	7.4	2024-25 Deliverables of the Energex Demand Management program	77
		7.4.1 Broad based demand management	77
		7.4.2 Targeted demand management	78
		7.4.3 Customer enablement	78
		7.4.4 Network battery support agreement	79
		7.4.5 Demand management innovation	79
	7.5	Energex demand management program delivery over the next year	79
8	Asse	t life-cycle management	82
	8.1	Approach	82
	8.2	Asset maintenance strategy overview	83
		8.2.1 Asset inspections and condition based maintenance	83
	8.3	Asset replacement strategy overview	84
		8.3.1 Line Assets and distribution equipment	85
		8.3.2 Substation primary plant	88
		8.3.3 Substation secondary systems	89

	8.4	Other programs	89
		8.4.1 Vegetation management	89
		8.4.2 Overhead network clearance	90
	8.5	Derating	90
9	Netw	ork reliability	92
	9.1	Reliability measures and standards	92
		9.1.1 Minimum Service Standards (MSS)	92
		9.1.2 Reliability performance in 2024-25	92
		9.1.3 Reliability compliance process	93
		9.1.4 Reliability corrective actions	94
	9.2	Service Target Performance Incentive Scheme (STPIS)	94
		9.2.1 STPIS results	95
	9.3	High impact weather events	99
		9.3.1 Summer preparedness	99
		9.3.2 Bushfire management	100
		9.3.3 Flood resilience	101
	9.4	Guaranteed Service Levels (GSLs)	102
		9.4.1 Automated Guaranteed Service Level payment	103
	9.5	Worst performing distribution feeders	104
		9.5.1 Details of worst performing distribution feeders reported from 2024-25	104
		9.5.2 Review of worst performing distribution feeders from 2023-24	105
		9.5.3 Worst performing feeder improvement program	105
	9.6	Safety net target performance	106
	9.7	Emergency frequency control schemes and protection systems	106
10	Powe	er quality	108
	10.1	Power quality supply standards, codes and guidelines	108
	10.2	Power quality performance 2024-25	108
		10.2.1Power quality performance monitoring	108
		10.2.2Steady State Voltage Regulation - overvoltage	108
		10.2.3Steady State Voltage Regulation – undervoltage	109
		10.2.4 Voltage unbalance	110
		10.2.5Harmonic distortion	110
	10.3	Power quality corrective actions	111
	10.4	Quality of supply	
11	Netw	ork challenges and opportunities	
	11.1	Modernising the distribution network	
	11.2	Solar PV	
		11.2.1Solar PV statistics	115
		11.2.2Impact of solar PV on load profiles	116
		11.2.3Solar PV remediation options	121
		11.2.4Key issues arising from embedded generation applications	122
	11.3	Battery Energy Storage Systems	
	11.4	Electric vehicles	
	11.5	Dynamic connections	
	11.6	Customer connections impacting system strength	
	11.7	Land and easement acquisition	

11.8	Impact of climate change on the network	125
12 Inform	nation, Communication and Operational Technology systems	128
12.1	Information and Communication Technology	128
	12.1.1 Information and Communication Technology investments 2024-25	128
	12.1.2Asset and Works Management	129
	12.1.3 Distribution network operations	129
	12.1.4 Customer and market systems	129
	12.1.5Corporate systems	129
	12.1.6ICT management systems, productivity, and cyber security	130
	12.1.7 Infrastructure program	130
	12.1.8Minor applications change and compliance	131
12.2	Forward Information and Communication Technology program	131
12.3	Metering	132
12.4	Operational and future technology	132
	12.4.1Telecommunications	132
	12.4.2Operational technology systems	133
	12.4.3 Operational technology investments in 2024-25	136
	12.4.4 Planned operational technology investments for 2025-26 to 2029-30	137
Appendix A	A Terms and definitions	139
Appendix E	National Electricity Rules and Distribution Authority cross reference	146
Appendix (Network limitations and mitigation strategies	158
Appendix [Substation forecast and capacity tables	161
Appendix E	Feeder forecast and capacity tables	166
Appendix F	Worst performing distribution feeders 2024-25	171

Table of figures

Figure 1: Typical electricity supply chain	6
Figure 2: Energy Queensland vision, purpose, strategic areas of focus, and values	10
Figure 3: Energex distribution service area	
Figure 4: How Energy Queensland is supporting the Queensland Energy Roadmap	13
Figure 5: Interface between EQL strategic objectives and the asset management system	18
Figure 6: Program of Works governance	19
Figure 7: Our customer strategy principles	31
Figure 8: System demand – solar PV impact, 22 January 2025	
Figure 9: Three scenarios of EGX summer peak MW forecasts @ 50PoE level	42
Figure 10: Traditional simplified DNSP network	
Figure 11: Energex restoration profiles by area/designation	48
Figure 12: EQL climate zones	57
Figure 13: System limitations assessing process	67
Figure 14: Network planning assessment - RIT-D process	76
Figure 15: Non-Network assessment process for expenditure <\$7M	76
Figure 16: Process to create asset investment plan	84
Figure 17: Annual network SAIDI and SAIFI performance five-year rolling average trend	93
Figure 18: STPIS targets and results for unplanned CBD feeders	96
Figure 19: STPIS targets and results for Urban feeders	97
Figure 20: STPIS targets and results for Short Rural feeders	98
Figure 21: Percentage of monitored sites reporting overvoltage	109
Figure 22: Percentage of monitored sites reporting undervoltage	109
Figure 23: Percentage of monitored sites reporting voltage unbalance	110
Figure 24: Total Harmonic Distortion sites	
Figure 25: Quality of supply enquiries per 10,000 customers per month	111
Figure 26: Quality of Supply enquiries by category 2024-25	
Figure 27: Grid connected solar PV system capacity by tariff as of June 2025	116
Figure 28: Spring load profile with increasing solar PV of North Maclean zone substation	117
Figure 29: Number of customers with solar PV by zone substation	118
Figure 30: Installed capacity of solar PV by zone substation	119
Figure 31: Solar PV untake by zone substation	120

Table of tables

Table 1: Network and customer statistics at financial year end	11
Table 2 : Actual maximum demand growth – SEQ	
Table 3: Maximum demand forecast (MW) – SEQ	
Table 4: Contribution of solar PV, EVs and BESS to summer system peak demand	
Table 5: Service safety net outage and restoration targets by unsupplied load	
Table 6: Time of day definition	
Table 7: Energex distribution area climate parameters	56
Table 8: System operating voltages	59
Table 9: Steady state maximum voltage drop	60
Table 10: Maximum allowable voltage variance	
Table 11: Energex design fault level limits	63
Table 12: Joint planning activities covering 2025-26 to 2029-30	66
Table 13: Summary of substation and feeder limitations	71
Table 14: In Progress RIT-D projects	
Table 15: Foreseeable RIT-D projects to address long term constraints (>\$7M)	72
Table 16: Number of Energex neutral failures by financial years	
Table 17: Annual normalised reliability performance compared to MSS limits	92
Table 18: Normalised reliability performance compared to STPIS targets	95
Table 19: Customer Service compared to STPIS targets	
Table 20: GSL limits applied by feeder types	
Table 21: GSLs claims paid 2024-25	
Table 22: 2024-25 worst performing feeder – performance	104
Table 23: Remediation options for increasing penetrations of solar PV	121
Table 24: Embedded generation enquiries	122
Table 25: Embedded generation applications	
Table 26: Embedded generator applications – average time to complete	123
Table 27: ICT investments 2024-25	
Table 28: ICT investments 2025-26 to 2029-30	
Table 29: Operational technology investments 2024-25	
Table 30: Operational technology planned investments 2025-26 to 2029-30	137
Table 31: Terms and definitions	139
Table 32: NER cross reference	146
Table 33: DA cross reference	155
Table 34: Appendix D: Definition of terms – peak load forecast and capacity tables	162
Table 35: Appendix E: Definition of terms - feeder capacity and forecast tables	168
Table 36: List of worst performing feeders	171

Executive Summary

Energex's Distribution Annual Planning Report (DAPR) outlines the strategic direction for the network over the next five years in the context of a rapidly evolving technological landscape, continued high levels of renewable energy integration and changing customer expectations. The DAPR provides stakeholders with insights into the factors shaping our plans, including electricity demand forecasts, network conditions, service performance trends, and our investment priorities. It also highlights opportunities for collaboration with customers, industry partners and communities to deliver safe, reliable, affordable and sustainable energy across South-East Queensland (SEQ).

Following the release of the Queensland Government's *Energy Roadmap: Improving our energy assets* while building what we need for the future (Queensland Energy Roadmap) ¹ in October 2025, Energex has committed to supporting its objectives of affordability, reliability, and sustainability. Over the coming years, Energex will continue to strengthen the grid's resilience to severe weather events, enable customers to connect, and support growth in network demand and deliver the community battery program. These priorities reflect Energex's critical role in powering SEQ's economic growth and energy transition.

Energex aims to maximise value for customers by improving efficiency, reducing costs, and enhancing service delivery, while maintaining safety standards. Key priorities include faster connection timeframes, greater integration of consumer energy resources (CER), and world-class customer service, particularly when restoring supply to customers impacted by severe weather events.

Key trends impacting the Energex network that are addressed in the DAPR include:

- Population growth and housing shortfalls Through our connections guarantee, Energex aims to connect new housing developments safely and efficiently to support SEQ's growing communities.
- Affordability challenges Energex recognises the ongoing affordability and equity issues
 related to energy in the community. We are committed to driving efficiency and reducing costs
 across all areas of the business through our Operational Excellence Program.
- Severe weather events Energex takes pride in its ability to respond to natural disasters and
 restore supply to customers impacted by these events quickly and safely. Together with Ergon
 Energy, we are at the forefront of Australian networks in working closely with the communities
 we serve to reconnect them during these challenging times. Energex remains fully committed
 to maintaining a resilient and robust network and, when called upon, restoring service as safely
 and swiftly as possible.
- Distributed energy resources (DER) Energex has one of the highest solar photovoltaic (PV) penetration rates in Australia and anticipates continued growth in not only solar PV but also consumer batteries and electric vehicles (EVs). This presents both opportunities and challenges for how we plan and manage the network to meet evolving customer needs.

To meet the diverse needs of our customers and communities in an increasingly dynamic energy environment, Energex maintains active and ongoing engagement with customers and stakeholders to understand their priorities, expectations, and concerns. We connect with our customers through a range of digital platforms, community forums and research programs, such as the Customer Satisfaction (CSAT) and Net Trust Score (NTS) programs, and the Queensland Household Energy Survey (QHES). In 2024, these engagements primarily focused on our Distribution Determination for the 2025-30 regulatory control period, providing valuable insights that helped shape our investment plans for the five-year period. For our customers, affordability, reliability and sustainability remain critically important.

Energex is subject to economic regulation by the Australian Energy Regulator (AER) in accordance with the National Electricity Law and National Electricity Rules. On 30 April 2025, the AER finalised its

¹ Website: https://www.treasury.qld.gov.au/files/Queensland-Energy-Roadmap-2025-25-043.pdf

Executive Summary

Distribution Determination for Energex for the 2025-30 regulatory control period. This determination set the revenue cap and expenditure allowances guiding our operations. In line with regulatory requirements, we remain committed to ensuring all network investments are prudent and efficient and deliver long-term value for customers. For major projects exceeding \$7 million, we apply the Regulatory Investment Test for Distribution (RIT-D) to identify the most cost-effective solutions, whether network or non-network.

Energex places the highest priority on public safety, infrastructure protection, and rapid restoration of supply following high-impact weather events, recognising the growing reliance on electricity. Our comprehensive emergency management strategy includes a dedicated team focused on planning, preparedness, response, and recovery, supported by technology-driven damage assessment and continuous process improvement. Seasonal readiness activities include maintaining mobile generation assets, securing critical spares, managing vegetation, and strengthening inter-agency collaboration to enhance resilience against storms, bushfires, and floods. Key initiatives include bushfire risk modelling, asset upgrades, use of fire-resistant materials, and flood mapping using geospatial systems. Community engagement and transparent communication remain central to our approach to minimising disruption and safeguarding SEQ communities during extreme weather events.

In 2024-25, Energex's network reliability performance was favourable for five of the six Minimum Service Standard (MSS) measures set under our Distribution Authority (DA). The only measure not achieved related to short rural feeders and was primarily due to an increase in the average duration of planned maintenance works and adverse weather events during the period. Under the Service Target Performance Incentive Scheme (STPIS), results were mixed, with CBD feeders meeting the unplanned outage frequency target, while other categories fell short of reliability targets due to factors such as underground equipment failures, overhead line issues, and vegetation-related outages. Energex delivered highly favourable customer service performance in 2024-25, outperforming the STPIS target by answering a higher percentage (89.18%) of calls within 30 seconds than the 88.08% target. Energex remains committed to improving performance against both MSS and STPIS measures through a continued focus on reliability, customer service, restoration times, and targeted investment in resilience initiatives.

The growing uptake of solar PV across residential, commercial and industrial sectors is reshaping demand patterns on the network. During the 2024-25 summer, system peak demand reached 5,839MW at 5.30pm on Wednesday, 22 January 2025, when temperatures at Amberley peaked at 37°C. It is estimated that solar PV reduced the peak by around 309MW. At the same time, high solar PV penetration is driving a shift in minimum demand from late evening or early morning to daytime periods. The most recent minimum demand occurred at 10.30am on Sunday, 5 October 2025 at just 39.77MW, reflecting significant solar generation and reduced grid consumption during daylight hours.

Looking ahead, the expected rise in EV adoption rates, driven by increased model availability and public charging infrastructure, alongside growing interest in battery storage and other DER will reshape energy demand profiles. Energex is working closely with regulators, market operators, industry participants, and stakeholders to address challenges associated with high DER penetration, EV integration, and emerging technologies such as Battery Energy Storage Systems (BESS). This collaboration spans market policy development, regulatory frameworks, innovation and trials, consumer engagement and future planning.

Cyber security also remains a critical focus as we adapt our strategies to safeguard network and business operations. Our Information and Communications Technology (ICT) and Operational Technology (OT) are enhancing our technology infrastructure to support evolving business needs, a distributed workforce, and the complex cyber security landscape.

Preparations for the Brisbane 2032 Olympic and Paralympic Games are underway to ensure SEQ and Energex's network are ready for these landmark events. With SEQ (and regional Queensland) set to be showcased on the world stage, Energex (and Ergon Energy) have a significant role to play in ensuring that energy is supplied safely, reliably and sustainably to all venues across the State. We are well positioned to play our part in delivering a successful Olympic and Paralympic Games for Australia.

Executive Summary

Energex is introducing a connections guarantee in line with the Queensland Energy Roadmap to enhance transparency and support timely, efficient connections for new generation, storage, and load projects. This initiative will play a critical role in facilitating private investment and accelerating the energy transition by ensuring clear service standards and accountability. The guarantee will be underpinned by key performance indicators (KPIs), with results reported quarterly to shareholding Ministers, reinforcing the importance of delivering on connection commitments as a strategic priority.

We remain committed to working closely with our stakeholders to build a more resilient, dynamic, affordable, and environmentally conscious energy future for SEQ.

Energex continues to dedicate resources to enhancing safety in our operations, maintenance and replacement practices across all asset categories and continues to invest in trialling new technologies that has the potential to deliver safer and more efficient outcomes and value for our customers. The aging Energex network and the increased risk of equipment failure towards the end of its life cycle, underscores the paramount importance of ensuring safety of our staff, customers and communities.

Many of the initiatives outlined in this report will require active collaboration with customers and industry partners to deliver successful outcomes, while our online interactive network maps provide valuable insights for potential investors, highlighting opportunities for future development. To promote transparency and engagement, Energex will also publish a summary version of the DAPR to keep our customers, communities, and stakeholders informed.

Chapter 1

Introduction

- 1.1 Foreword
- 1.2 Network overview
- 1.3 Peak demand
- 1.4 Minimum demand
- 1.5 Changes from previous year's DAPR
- 1.6 DAPR enquiries

1 Introduction

1.1 Foreword

The DAPR 2025 explains how Energex is continuing to safely and efficiently manage the electricity distribution network in SEQ and also details Energex's strategies for the next five years in relation to: load forecasting, demand management, non-network initiatives, network investments, customer load and renewable connection support, reliability and supply quality in safe, prudent and efficient operation and management of our power network.

The DAPR supports our commitment to open and transparent customer, community, and shareholder engagement. It is published as required under the National Electricity Rules (NER Rule 5.13 and Schedule 5.8) and in in compliance with Queensland's Electricity Distribution Network Code (clause 2.2) and Energex's Distribution Authority.

This report captures the results of planning activities including forecasts of emerging network limitations for the purposes of market consultations. Importantly, customer supply risks are assessed through ongoing planning activities, and in conjunction with market participants, appropriate future investments are scheduled to ensure risks are addressed in accordance with obligated service standards.

For readers seeking to learn of planning outcomes since the 2024 DAPR, they are referred to Section 5.10: Joint planning for joint planning outcomes, to Section 6.4: Regulatory Investment Test for Distribution (RIT-D) projects, and to Appendix C: Network limitations and mitigation strategies, for committed projects and proposed opportunities.

Energex recognises that as cost of living pressures increase for many South-East Queenslanders, prudent investment plans are required to maintain performance targets whilst minimising operating and capital costs. In addition, Energex must continue to ensure the safety of the public and its employees by managing the risks associated with the electricity network.

1.2 Network overview

Electricity is a commodity that underpins our modern society, providing energy to domestic, commercial, industrial, agricultural, and mining sectors, supporting lifestyle and prosperity of individuals as well as our state as a whole. The electricity grid, including transmission, sub-transmission and distribution networks, connects, and facilitates the distribution of electrical energy between generators and users. The bulk of electricity is generated on demand at locations remote to the point of supply.

Large generators located outside SEQ are connected to Powerlink's transmission network. In turn, Powerlink delivers this electricity to the Energex distribution network in order to distribute electricity to customers. The transmission network supplies bulk electricity to Energex's distribution network, which in turn supplies to Queensland's industries, homes, and businesses.

Figure 1 summarises this electricity supply chain to illustrate how electricity is generated, transmitted, and distributed to customers. Connection points exist between generators, transmission networks, distribution networks, embedded generators, and large customers. Electricity carried over Powerlink's network is delivered in bulk to substations that connect to overhead or underground sub-transmission feeders to supply zone substations.

Zone substations connect to overhead or underground distribution feeders operating at 11kV. Distribution feeders distribute electricity to distribution transformers that supply Low Voltage (LV) lines at 400/230V for customers. Importantly, customers use the network to obtain electricity upon demand, and to export electricity when excess solar power is generated.

With the increase in Embedded Generation (EG) and energy storage systems being connected to the network, including small and large scale solar PV, batteries and other renewable energy sources, electricity is now being generated and exported into the grid from customers' premises. Depending on the size and number of these systems, power flows in parts of our networks are periodically in reverse, creating both challenges and opportunities for the network.

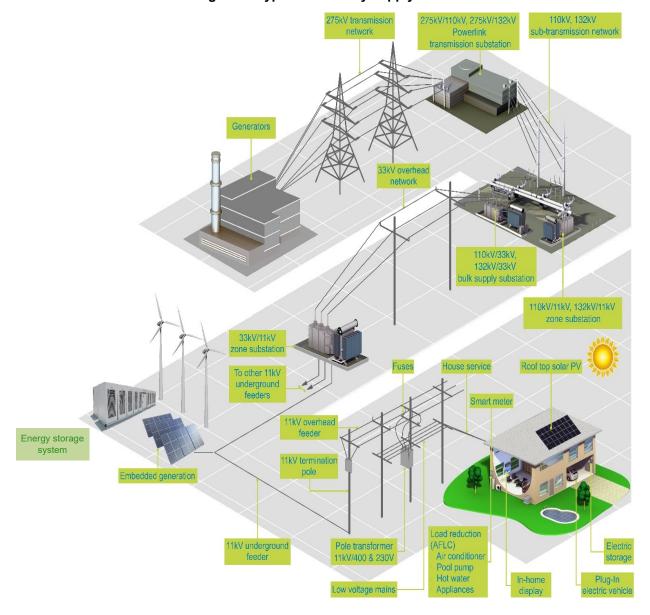


Figure 1: Typical electricity supply chain

1.3 Peak demand

Peak demand refers to the highest level of electricity consumption recorded on the power grid during a specific time. Growth in peak demand is one of the critical factors in the planning, design, and operation of the electricity system. Peak demand occurs at different times in different locations, and this has various implications at varying voltage levels of the network. The transmission network must contain sufficient capacity to carry enough electricity to meet the global peak demand for the region serviced. Whereas distribution levels of the network must contain sufficient capacity to carry enough electricity to meet peak demand in every street. The points in time that peak demand occurs on assets in each street, is often different to the point in time the peak occurs for the whole region. Therefore, there are varying degrees of diversity in demand between the points in time that peaks occur across each street, and the points in time that peak demands occur on the backbone network.

In a positive demand growth environment, increasing peak demand may create the need for additional investment, dependent on detailed planning. Energex must maintain sufficient capacity and voltage stability to supply every home and business on the day of the year when electricity demand is at its maximum, no matter where those customers are connected in the network. In addition, growth in peak demand may occur where new property developments are being established. At the same time, over the same period, peak demand may be declining in areas where usage patterns are changing due to customer behaviour or from the impacts of alternative sources like solar PV and BESS. This means that growth patterns of electricity demand may be flat on a global scale, but there may be pockets of insufficient network capacity emerging in local areas experiencing increasing peak demand or new development.

The 2024-25 Summer system peak demand was 5,839MW at 17:30 on 22 January 2025 as the temperatures at Amberley hit a maximum of 37.0 degrees Celsius. It is estimated that solar PV reduced the peak by around 309MW at this time.

1.4 Minimum demand

Historically, strategic load forecasting has focused on maximum demand, energy delivered, energy purchased and customer numbers. However, the uptake of solar PV in the residential, commercial, and industrial sectors has created the need to forecast minimum demand on the Energex network.

The impact of a daily minimum demand caused by the increase of rooftop solar uptake affects the distribution network at three levels, all of which will affect Capital expenditure (CAPEX):

- System level Oversupply during the middle of the day may force large solar generators to be switched off as ramp up times are quicker than coal fired power stations. To date, Energex has been able to leverage voltage regulation at the transmission connection point to limit the need for downstream remediation, but increasingly this will not be possible as the transmission network runs out of transformer tap or 'buck' range
- Zone substation level Cyclic issues due to reverse power flow may reduce the life of zone substation transformers
- At a feeder level May impact the stability of individual feeders causing voltage fluctuations which, in turn, impact protection settings at a feeder level. Given the high number of open and closed delta voltage regulators on Energex's distribution feeder network, cogeneration settings on regulators would need to be revisited to ensure voltage levels on feeders remain at a stable level during the day.

Rooftop PV is driving an increasingly rapid change in the load on the network from the day to night. This may give rise to an expanded role for fast-ramping but more expensive generators to manage the transition and supply overnight - again limiting the economic viability of existing baseload and new renewable generators and increasing the cost of wholesale energy. Managing the transition may necessitate greater dynamic reactive plant and give rise to challenges in system operation.

The rapid uptake of solar PV has changed the way power travels through the network, from a purely one-way to bi-directional energy flow.

The high number of residential rooftop solar on the network along with forecast installations has shifted the daily minimum demand on the network from a night-time minimum to a daytime minimum. Historically, Energex's minimum demand occurred in the late evening/early morning.

The minimum demand recorded in the past twelve months is the lowest on record, with a daytime minimum of 39.7MW which occurred at 10:30 am Sunday, 5 October 2025. Although the minimum demand on the network was not negative, analysis of the historical minimum demand trend shows that, at a system level, daytime minimum demands for the Energex network could fall below zero within a few years.

1.5 Changes from previous year's DAPR

For consultation purposes, Energex is ensuring the DAPR remains relevant and evolves with ever changing market expectations. To this end, Energex has made a number of improvements in the 2025 DAPR. These changes aim to make relevant information accessible and understood by all stakeholders, non-network providers and interested parties.

The following changes have occurred as compared to the 2024 DAPR:

- Summary of how Energy Queensland is supporting the Queensland Energy Roadmap included in Chapter 2: Corporate profile and asset management
- Update of Community and Customer Engagement chapter to align with customer interactions and engagement activities. Our engagement activities ensure we are meeting the unique and diverse needs of our communities and customers by continuously investing in talking and listening to our customers and other stakeholders about their expectations, concerns, and suggestions
- Review and update of maximum demand forecast methodology and the demand forecasts over the next five years
- Updates on Safety Net briefings in Chapter 5: Network planning framework
- Update Time of day explanation to elaborate use of ratings defined in Energex's corporate database (ERAT2) in Chapter 5: Network planning framework
- Updates on Joint Planning investments with Powerlink. (Information is provided in Chapter 5: Network planning framework)
- Updates on Regulatory Investment Test for Distribution (RIT-D). (Information is provided in Section 6.4: Regulatory Investment Test for Distribution (RIT-D) projects
- Update of RIT-D threshold from \$6M to \$7M as from 1 January 2025
- There are 4 RIT-D projects approved in this DAPR period. RIT-D information is presented in Section 6.4
- Update on graphs and contents of Chapter 10 Power quality.

1.6 DAPR enquiries

In accordance with NER 5.13.2(e), Energex advises that all enquiries and feedback relating to this document are to be submitted by email to the following address:

DAPR Enquiries@energex.com.au

Energex welcomes feedback and any improvement opportunities identified by market participants and other stakeholders.

Chapter 2

Corporate profile and asset management

- 2.1 Corporate overview
- 2.2 Electricity distribution network
- 2.3 Network operating environment
- 2.4 Asset management overview

2 Corporate profile and asset management

2.1 Corporate overview

Energex (Energex Limited) is a subsidiary of Energy Queensland Limited, the Queensland Government Owned Corporation formed through a merger in June 2016.

2.1.1 Vision, purpose, strategic areas of focus, and values

Figure 2: Energy Queensland vision, purpose, strategic areas of focus, and values

Our Vision

#electriclife2032 We energise Queensland communities

Our Purpose

To safely deliver secure, affordable, and sustainable energy solutions with our communities and customers

Our Strategic Areas of Focus

Powering tomorrow

The fusion of a smart, safe and secure energy system

Experience excellence

Setting new standards for customers in their energy transition

Sustainable future

Leading the charge for a successful. greener tomorrow

Anchored in strength

Striving for operational excellence and creating a future-fit employee experience

Our Values

2.2 Electricity distribution network

Energex distributes electricity to over 1.61 million residential, commercial, and industrial customer connections, supporting a population base of over 4 million in SEQ.

At the core of the business is a high performing electricity distribution network that consists of property, plant and equipment and assets valued at approximately \$15.69 billion.

The bulk of the electricity distributed enters Energex's distribution network through connection points into Powerlink Queensland's high voltage transmission network, which brings the electricity from the state's major generation plants. However, Energex also enables connection of Distributed Energy Resources (DER), such as solar energy systems and other embedded generators.

The Energex network is characterised by:

Connection to Powerlink's transmission network at 27 connection points ²

² Note: Count is distinguished by voltage level

- High density areas, such as the Brisbane's Central Business District (CBD), and the Gold Coast and Sunshine Coast city areas, typically supplied by 110/11kV, 110/33kV, 132/33kV, or 132/11kV substations
- Urban and Rural areas where 110/33kV or 132/33kV bulk supply substations are typically used to supply 33/11kV zone substations
- Inner Brisbane suburban areas with extensive older, meshed 33kV underground cable networks that supply zone substations
- Outer suburbs and growth areas to the north, south and west of Brisbane, which are supplied via modern indoor substations of modular design
- New subdivisions in urban and suburban areas supplied by underground networks with padmount distribution substations.

Table 1 presents a summary of Energex's network and customer statistics over the past year. Changes in asset numbers over this timeframe have occurred as a consequence of demands for electricity, residential, commercial, and industrial developments.

Table 1: Network and customer statistics at financial year end

Network Statistics	
Bulk Supply Substations ³	31
Zone Substations ⁴ and switching stations	246
Distribution Transformers	53,421
Poles ⁵	452,228
Public lighting poles	190,809
Overhead powerlines - total	35,077km
Sub-transmission ⁶	3,394km
High Voltage distribution	17,505km
SWER High Voltage distribution	41km
Low Voltage distribution	14,137km
Underground power cables – total	22,161km
Sub-transmission ⁵	990km
High Voltage distribution	7,025km
Low Voltage distribution	14,146km

Distribution network customers		
Total distribution customers	1,645,064	
Residential customers	1,482,102	
Other customers	162,962	

³ Number of sites where Energex owns the power transformers

⁴ Excludes jointly owned sites

⁵ Include Power, Staked and Streetlight Only Poles

⁶ Includes 33kV lines

Figure 3 shows our distribution service area.

energex **ENERGEX** Rainbow Beach **AREA OF SUPPLY** Kilkivan SUNSHINE COAST Maroochydore BRISBANE NORTH BRISBANE BRISBANE CENTRAL BRISBANE SOUTH IPSWICH LOCKYER Beaudesert Surfers Paradise **GOLD COAST** Warwick Murwillumbah

Figure 3: Energex distribution service area

2.3 Network operating environment

This section presents key external drivers, associated industry impacts and our safety and environmental commitments that underpin our planning decisions in an operating environment increasingly dominated by distributed generation. Many of these have emerged from Energex's forward planning process which informs the identification of Energex's five-year business objectives covering this forward planning period. While customer demand is still the main trigger in our network augmentation decisions, bi-directional energy flow throughout the network is presenting new challenges particularly with respect to maintaining statutory voltage limits.

2.3.1 Physical environment

SEQ experiences challenging environmental conditions in which to operate an electricity supply network. Features of the region's climatic conditions impacting the distribution network are:

- High rainfall areas with rapid vegetation growth
- Periods of sustained high temperatures and/or high humidity
- Salt spray in exposed coastal areas resulting in reduced life of assets due to corrosion
- Bushfires, flooding, and storm surges
- SEQ has some of Australia's highest incidence of lightning activity.

Performance of the network under these conditions is discussed further in Section 9.3: High impact weather events.

2.3.2 Shareholder and government expectations

Energex is committed to supporting the Queensland Energy Roadmap by aligning our strategic directions with targeted investments in network resilience, community battery deployment, customer affordability initiatives, energy efficiency measures and streamlined customer connection processes. We are also continuing to enable our customers to connect more CER and DER, working to progress network tariff reforms and implementing cost-effective innovative energy-related solutions. Figure 4 summarises how Energy Queensland is supporting the Queensland Energy Roadmap.

Strong stakeholder engagement and continued performance in safety, customer satisfaction, and financial management position Energy Queensland (Energex and Ergon Energy) as a trusted partner in delivering affordable, reliable, and sustainable energy for Queenslanders.

O 囚 **Community Batteries Network Resilience** Affordability **Energy efficiency** The business is delivering Energy Queensland is rolling The new Customer A Tariff Review for Agriculture As Oueensland's largest out community-level batteries across the distribution network and will partner with the private Connections group streamlining developer electricity retailer and sole electricity distributor, Energy preparing for the 2025/26 and enabling faster EQL in consultation with Queensland will continue to severe weather season. connections, supporting Government in the lead up identify opportunities across supporting the Roadmap's emphasis on asset reliability and disaster preparedness. CER to support customer affordability, voluntarily increase electrification of their homes and transport, as Oueensland's housing and the yearly QCA pricing ocess for July 1 next year. sector to manage minimum system load and support rooftop solar integration. This initiative is directly referenced in the Roadmap infrastructure growth in line with the Roadmap's objectives. A "Connections Guarantee" will be developed well as source presently underutilised capacity in the system where this is a lower cost alternative to capital as a critical enabler for grid which relates to the new KPIs stability and efficiency. The investment and improves reliability. inister to encourage private sector investment

Figure 4: How Energy Queensland is supporting the Queensland Energy Roadmap

2.3.3 Public safety

Safety is Energy Queensland's highest priority – protecting our employees, our customers, and the broader Queensland community. All business units within EQL play a part in ensuring public safety is maintained.

There are five key stakeholder business units who carry the bulk of responsibilities and accountabilities of ensuring the overarching program is maintained and remains effective. The five key stakeholder business units are:

- Engineering Asset owner responsible for: Network Planning, Concept Development, Asset Management, Operation and Electrical Safety of Network Assets
- Operations Delivery of EQL's Program of Work (PoW) including detailed design construction, operation, and maintenance of the network
- Customer Coordinate and deliver Public Safety advertising and information campaigns in the market and liaison with Government and other key stakeholders in relation to public safety objectives, initiatives, and concerns
- People, Property and Safety Coordination of the Public Safety Steering Committee, incident management and analysis, internal and external reporting, SME on non-engineering matters, and physical security
- Digital and Technology Management and delivery of corporate networks, digital enablement and cyber security.

Each of the five key stakeholder business units oversee, manage, and contribute towards discrete aspects which, when assessed all together represent the overarching organisational approach to Public Safety.

Informed by incident data and learnings from investigating and attending incidents we continue to target industries at risk, who frequently work in close proximity to powerlines to raise awareness of the powerline safety dangers. This data identifies the industries with the greatest contact with powerlines - construction, aviation, agriculture, emergency services and transport.

Our important and long-running community safety campaign on powerline awareness has continued, supported by the Look up and Live website⁷ online application that allows members of the community to pinpoint our overhead powerlines and power pole locations.

The 'app' was built by geospatially overlying powerlines onto imagery, enabling workers and others in the community to effectively plan activities near powerlines. Users are also able to examine worksites from various vantage points and identify the electrical hazards, assess powerline risks, implement appropriate control measures, and access links with additional safety advice. The greatest benefits of this tool are enhanced workers' awareness and improved community safety around powerlines.

2.3.4 EQL health, safety, and environment management system

The Energy Queensland Limited Health, Safety and Environment Management System (EQL HSE MS) has been developed to provide a framework to effectively manage health, safety, environment, cultural heritage, risks across the organisation. This framework was modelled upon the existing management system requirements for Energex and Ergon Energy to enable the transition to a centralised management system. The management system is currently accredited to:

- ISO 14001:2015 Environment Management System
- ISO 45001:2018 Occupational Health and Safety Management System.

⁷Website:

https://byda.maps.arcgis.com/apps/webappviewer/index.html?id=8a8f088ca9774464884d6711b347fff8

Corporate profile and asset management

The management system consists of 12 standards which are aligned to accreditation requirements. Standard 8 Control of Work consists of 14 Hazard Controls (HCs) to enable business units to implement fit for purpose risk controls. HCs include requirements which are accepted practice across Energy Queensland, which may exceed legal requirements and include:

- 1. Transport
- 2. Access and Entry
- 3. Community Safety
- 4. Plant, Tools, and Equipment
- 5. Working with Electricity
- 6. Asset Safety
- 7. Manual Tasks
- 8. Hazardous Materials and Waste Management
- 9. Fit for Work
- 10. Land and Water Management and Disturbance
- 11. Air, Energy and Greenhouse Gas
- 12. Occupational Health, Noise and Amenity
- 13. Physical Security
- 14. Working at Heights.

The EQL HSE MS is subject to third party surveillance audits and the Electrical Safety Office (ESO) Electrical Entity audit conducted once per year.

2.3.5 Environmental commitments

Energex is committed to reduce the environmental and cultural heritage impact of our operations as outlined in the Environment and Cultural Heritage Policy 8. We will safely deliver secure, affordable and sustainable energy solutions for our customers and communities through reducing our carbon emissions, supporting increased connection of renewables and build on the foundations of environmental sustainability to improve business performance. Our commitment is to reduce the impacts from our operations on the environment and cultural heritage and continue to grow respectful relationships with all the communities we serve.

The Energex electricity network traverses diverse environmental and culturally significant areas including coastal, rural, and urban landscapes. The ISO 14001 (Environment) certified Energy Queensland Integrated Management Systems (IMS) provides an effective operational framework to plan, implement, monitor, and improve our services with balanced consideration of the risks and opportunities to our environment, cultural heritage, and communities. We implement and support robust systems and processes founded in legislative compliance and set and transparently report on objectives and targets to continually improve environmental and cultural heritage outcomes.

We are focused on pursuing opportunities to reduce our emissions footprint, to reduce waste, to improve our management of hydrocarbons and chemicals to avoid contamination, working with communities and customers including First Nations People to achieve mutually beneficial outcomes and to protect biodiversity. We are implementing plans to build greater resilience to mitigate the potential risks of a changing climate.

-

⁸ Website: https://www.energyq.com.au/ data/assets/pdf file/0004/836113/Environment-and-Cultural-Heritage-P058-691101.pdf

2.3.6 Legislative compliance

Energex Limited is a wholly owned subsidiary of Energy Queensland Limited which is a Queensland Government Owned Corporation (GOC).

The two shareholding Ministers to whom Energy Queensland Limited's Board report under the *Government Owned Corporations Act* 1993 (Qld), are:

- Treasurer, Minister for Energy and Minister for Home Ownership; and
- Minister for Finance, Trade, Employment and Training.

Energex operates in accordance with all relevant legislation, including:

- Government Owned Corporations Act 1993 (Qld)
- Electricity Act 1994 (Qld)
- Electricity Regulation 2006 (Qld)
- Electricity Distribution Network Code
- Electricity National Scheme (Queensland) Act 1997
- The National Electricity (Queensland) Law as set out in the schedule to the National Electricity (South Australia) Act 1996
- The National Electricity (Queensland) Regulations under the National Electricity (South Australia) Act 1996
- The National Energy Retail Law as set out in the schedule to the National Energy Retail Law (South Australia) Act 2011
- The National Energy Retail Regulations
- The National Electricity Rules and National Energy Retail Rules
- Electrical Safety Act 2002 (Qld)
- Electrical Safety Regulation 2013 (Qld)
- Work Health and Safety Act 2011 (Qld)
- Work Health and Safety Regulation 2011 (Qld)
- The Electrical Safety Codes of Practice 2020, 2021 and 2024
- State and federal environment and planning laws, including the *Environment Protection and Biodiversity Conservation Act* 1999 (Cth), Environmental Protection Act 1994 (Qld) and Planning Act 2016 (Qld).

2.3.7 Economic regulatory environment

Energex is subject to economic regulation by the AER in accordance with the National Electricity Law and Rules. The AER applies an incentive-based regulatory framework that encourages Energex to provide services as efficiently as possible. The AER does so by setting the maximum regulated revenues that we are allowed to recover from our customers during each year of the regulatory control period. The revenues are based on an estimate of the costs that a prudent and efficient network business would incur to meet its regulatory obligations. Given that the revenues are locked in at the start of the period, we have a general incentive to provide our services at less than the forecast costs and keep the difference until the end of the regulatory period. In the following period, we share the benefits of efficiencies with our customers.

Corporate profile and asset management

This general incentive framework is complemented by a suite of guidelines, models, and incentive schemes, including, amongst others:

- Efficiency Benefits Sharing Scheme and the Capital Expenditure Sharing Scheme, which
 encourage us to pursue efficiency improvements in Operating Expenditure (OPEX) and CAPEX
 and share them with customers
- Service Target Performance Incentive Scheme (STPIS) which encourages us to set, maintain or improve service performance
- Demand Management Incentive Scheme and <u>Demand Management Innovation Allowance</u> <u>Mechanism | Energex</u>⁹ (DMIAM), which encourage us to pursue non-network options
- RIT-D, which requires us to undertake a cost-benefit analysis and consult with stakeholders before undertaking major investments
- Ring-fencing Guideline, which requires us to separate our regulated services from contestable services.

On 30 April 2025, the AER published its Final Distribution Determination for Energex for the 2025-30 regulatory control period, commencing 1 July 2025 to 30 June 2030. This determination establishes the revenue cap and expenditure allowances that guide Energex's operations and investment decisions over the five-year period. In alignment with these regulatory requirements, Energex remains firmly committed to ensuring that all network investments are prudent, efficient, and deliver long-term value for customers. More information regarding Energex's allowed revenues and network prices can be found on the AER's website¹⁰

2.4 Asset management overview

Management of Energex's current and future assets is core business for Energex. Underpinning Energex's approach to asset management are a number of key principles, including making the network safe for employees and the community, delivering on customer promises, ensuring network performance meets required standards and maintaining a competitive cost structure.

This section provides an overview of Energex's:

- Best Practice Asset Management
- Asset Management Policy
- Strategic Asset Management Plan (SAMP)
- Network Investment Process.

2.4.1 Best practice asset management

Energex recognises the importance of maximising value from assets as a key contributor to realising its strategic intent of achieving balanced commercial outcomes for a sustainable future. To support this vision, our asset management practices are designed to ensure we extract the greatest possible value from our assets throughout their lifecycle.

In 2025, Energex achieved ISO 55001:2014 certification for its Asset Management System, which covers both regulated and unregulated network assets (including Diesel Power Stations). This includes all stages of the asset lifecycle: acquisition and procurement, operations and maintenance, refurbishment, replacement (including spares) and eventual disposal.

⁹ Website: https://www.energex.com.au/manage-your-energy/managing-electricity-demand/demand-management-innovation-allowance-mechanism

¹⁰ Website: https://www.aer.gov.au/industry/registers/determinations/energex-determination-2025-30/final-decision

2.4.2 Asset Management Policy

The Asset Management Policy provides the direction and broad framework for the content and implementation of Energex's asset management strategies, objectives, and plans. The Policy directs Energex to undertake requirements associated with safety & people, meeting customer needs, and the commitment to ensure asset management enablers and decision-making capability meets the current and future needs of Energex.

This Policy together with the Strategic Asset Management Plan are the primary documents in the asset management documentation hierarchy and influence subordinate asset management strategies, plans, standards, and processes.

2.4.3 Strategic Asset Management Plan (SAMP)

Energex's SAMP is the interface that articulates how organisational objectives are converted into asset management objectives as shown in Figure 5. The SAMP also sets the approach for developing asset management plans and the role of the asset management system in supporting achievement of the asset management objectives.

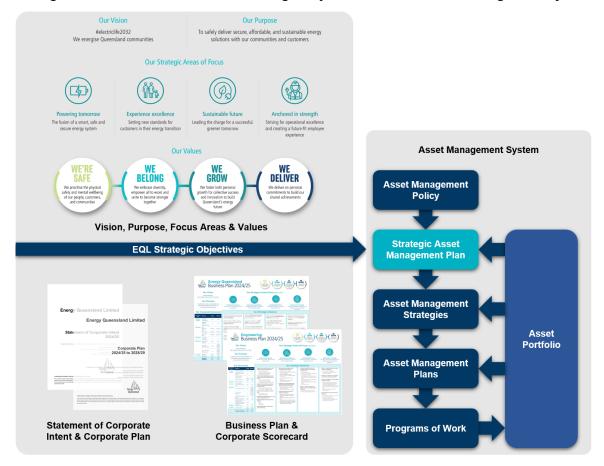


Figure 5: Interface between EQL strategic objectives and the asset management system

2.4.4 Corporate Governance and Investment process

Energex has a four-tier governance process to oversee future planning and expenditure on the distribution network as shown in Figure 6.

Central to Energex's governance process is legislative compliance. The *Government Owned Corporations Act 1993* (Qld) requires the submission of a corporate plan and statement of corporate intent while the NER requires preparation of the DAPR. The network investment portfolio expenditure forecast is included in the five-year corporate plan and statement of corporate intent.

Figure 6: Program of Works governance

The four tiers include:

- 1. Asset Management Strategy & Policy: Alignment of future network development and operational management with Energex's strategic direction and policy frameworks to deliver best practice asset management.
- Grid Investment Plan: Development of seven year rolling expenditure programs and a 12-month detailed PoW established through the annual planning review process. The Governing entities oversee:
 - fulfilment of compliance commitments
 - ensure the network risk profile is managed and aligned to the corporate risk appetite
 - approval of the annual network Programs of Work and forward expenditure forecasts.
- 3. PoW Performance Reporting: Energex has specific corporate Key Result Areas to ensure the PoW is being effectively delivered and ensures performance standards and customer commitments are being met. Program assurance checks including review of operational and financial program performance is overseen by senior management through the monthly Works Program Committee to ensure optimal outcomes with appropriate balance between governance, variation impact risks, emerging risks, and efficiency of delivery. A comprehensive PoW scorecard is prepared monthly, and key metrics are included in the operational delivery, which is a corporate Key Performance Indicator that, with monthly performance reporting for key projects, informs the Executive and Board. Quarterly PoW updates are provided to the Board.

Energex reports asset safety performance, including a review of asset related safety issues and emerging asset safety risks, monthly to an Executive Committee and quarterly to the Health, Safety and Environment sub-committee of the Board.

4. Project and Program Approval: Network projects and programs are overseen by executive management and subject to an investment approval process, requiring business cases to be approved by an appropriate financial delegate. Significant Network projects undergo a gated assurance process to ensure robust investment decisions based on credible options that deliver long-term benefits for customers and comply with regulatory obligations. The approval of projects and programs is governed by a clearly defined process aligned with financial delegations. As part of this governance framework, the Investment Review Committee (IRC) plays a critical role in reviewing investment requests, providing independent oversight, and ensuring that proposals meet strategic, financial, and regulatory requirements before progressing through each stage of approval.

2.4.5 Network risk and program optimisation

Management of risk is a crucial foundation for effective asset management and an integral part of ISO 55000 Asset Management suite of standards. Energy Queensland's Network Risk Management Framework ensures we apply a consistent approach to the assessment of network risks. It aligns with AS/NZS ISO 31000:2009 Risk Management - Principles & Guidelines and with Energy Queensland's

Portfolio Risk Management Framework. Energy Queensland continuously reviews inherent and emerging network risks to ensure optimisation of our projects and programs.

Network risks are assessed according to the following five risk categories:

- Safety
- Environment
- Legislated Requirements
- Customer Impacts
- Business Impacts.

Risk assessment involves development of credible scenarios that may lead to a specific risk consequence. This is followed by estimation of the likelihood of occurrence and subsequent development of a risk rating for each scenario. Projects and programs of work are then considered for inclusion in the PoW on a priority basis to deliver appropriate network-wide risk mitigation. Energex optimises its PoW to balance the inherent risk should some programs not proceed, it considers; cost and funding constraints, resourcing availability, performance targets and other project drivers including fulfilment of strategic objectives.

2.4.6 Further information

Further information on our network management is available on the Energex website¹¹.

¹¹ Website: https://www.energex.com.au/our-network

Chapter 3

Customer and community engagement

- 3.1 Overview
- 3.2 Our engagement program
- 3.3 What we have heard
- 3.4 Our customer strategy

3.1 Overview

To ensure we continue to meet the unique and diverse needs of our customers and communities we engage regularly with our customers, their representatives, and other stakeholders to capture their thoughts, needs, expectations, and concerns.

With the energy industry undergoing a period of rapid transformation, an open dialogue is critical for enabling diversity of thought, innovation and, ultimately, more now than ever, better, more affordable, sustainable, customer-focused solutions. Across our group we operate a coordinated, multi-channel customer and community engagement and performance measurement program. These conversations, and the evaluation of the services we deliver, are fundamental for creating real long-term value for our customers, our business, and Queensland.

Our engagements continue to influence the asset management strategies and investment plans covered in this report and help to align our future thinking with the long-term interests of our customers and communities.

Following the finalisation of our Distribution Determination for the 2025-30 regulatory control period, developed through an extensive customer and stakeholder engagement, our focus has now shifted to implementing a new Customer and Stakeholder Engagement Framework (Engagement Framework). This marks a shift from regulatory specific engagement to a broader, integrated model that reflects the feedback from the <u>AER's Final Decision on Energex's Distribution Determination</u>¹² and supports both breadth and depth in engagement through ongoing collaboration with our customers, stakeholders and communities.

The Engagement Framework enhances the coordination and effectiveness across all engagement activities. It provides a clear and strategic approach for how we will partner with customers and stakeholders to navigate the energy transition, strengthen our social licence, and ensure engagement is meaningful, transparent and impactful. It is supported by strong leadership from our Board, Executive and Senior Leadership teams.

At its centre is a refreshed Customer and Community Council, led by an independent chair and supported by a series of themed working groups. These working groups provide ongoing, informed input into our strategies and operations, focusing on areas such as sustainable energy solutions, asset management, planning and resilience, network pricing, and customer service and experience. Four working groups have been established to focus on our distribution network activities, each sponsored by General Managers, and made up of Council members and stakeholders with relevant energy and customer advocacy expertise. Guided by the International Association for Public Participation's (IAP2) Public Participation Spectrum¹³, the Engagement Framework helps clarify the purpose of each engagement and the level of influence customers and stakeholders can have in shaping our thinking.

This chapter provides an overview of our engagement activities and describes how they enable us to put our customers and communities at the heart of everything we do.

More information is available on our <u>Talking Energy</u>¹⁴ website and in our <u>Energy Queensland Ltd Annual</u> Report 2024-25 ¹⁵.

¹² Website: https://www.aer.gov.au/industry/registers/determinations/energex-determination-2025-30/final-decision

¹³ Website:https://engagementinstitute.org.au/resources/iap2-public-participation-spectrum/

¹⁴ Website: http://www.talkingenergy.com.au/

¹⁵ Website: https://www.energyq.com.au/ data/assets/pdf file/0011/1747334/Energy-Queensland-Limited-Annual-Report-2024-25.pdf

3.2 Our engagement program

3.2.1 Customer and community council and other forums

Our Customer and Community Council (the Council) remains one of our key engagement mechanisms, and serves as our overarching customer advisory body, representing the customer voice across Queensland. It brings together a diversity of skills, experiences and perspectives to ensure meaningful engagement with our customers and stakeholders. Through the Council, customer representatives are consulted on a wide range of matters and provided with the opportunity to inform our business planning and decisions. The Council's charter and broader membership helps ensure not only customer views but also the wider community are reflected in our engagement activities. To better support these representatives, we offer remuneration to assist with capacity building and enable their effective participation. The Council is chaired by an independent customer representative, further strengthening its role in providing insights, recommendations and advice to support our decision making on customer and community related matters.

The Network Pricing Working Group (NPWG) played a key role in informing the development of our Tariff Structure Statement element of our Distribution Determination 2025-2030¹⁶. The NPWG provided a valuable forum for in-depth engagement with a broad range of customer cohorts, including both residential and business and to include key industry professionals, enabling more inclusive and transparent conversations around network tariff reform. Given the success and effectiveness of this engagement over the past year, the NPWG has now been formalised as a standing working group under our new Engagement Framework. This ensures that network pricing continues to be shaped by meaningful input from a diverse range of customer and community perspectives as we move into the next regulatory period.

The NPWG has provided an important opportunity for in depth conversations in support of our engagement and customer consultation to inform the Tariff Structure Statement element of our Distribution Determination 2025-2030¹⁶

Network tariff reform is a complex topic that requires a balance between the needs of customers, the business, and the regulators, so it is vital that we bring our customers on the network tariff reform journey and obtain insights where we can of their lived experience of tariffs where possible and importantly identify the type of support customers across SEQ may need now and into the future to make informed tariff choices and better manage their energy usage and costs.

The Customer and Community Council, and associated Working Groups, bring a broad cross section of voices to the table on key issues as we plan for the new energy future. We also continue to hold bespoke forums for our large business customers, local government, agricultural sector, electrical contractors, and energy retailers to discuss topics relevant to specific customer and industry groups.

In addition, we continue to hold targeted issues-based workshops, for example, a series of sessions with customer representatives, stakeholders and industry professionals on matters relating to demand flexibility and how we can collaborate in the best interests of customers.

3.2.2 Working with industry partners

We engage actively with our industry partners, both strategically and operationally.

As a collaborating member of the <u>Energy Charter</u>¹⁷, we continue to provide a platform for collaboration with organisations from across the energy industry, building accountability across the supply chain and improving both customer and community outcomes.

Direct engagement and service relationships with the different energy retailers who operate across the Queensland market also remains critical to delivering for our customers.

16

¹⁶ Website: https://www.aer.gov.au/industry/registers/determinations/energex-determination-2025-30

¹⁷ Website: https://www.theenergycharter.com.au

Our industry engagement also includes participation, with industry memberships, in state-wide forums and operational engagement to listen and share knowledge with electrical contractors, solar installers, property developers and technology/appliance manufacturers. These channels of communications are increasingly important to us as we move forward.

3.2.3 Community leader engagement

To better connect with our communities and ensure we are effective in our service delivery, we have 17 established operational areas across SEQ. Each area has a locally based manager who builds relationships with our local community stakeholders and understands the areas' unique concerns.

To support local stakeholder engagement, we also host Board stakeholder events to ensure we keep in touch with our communities' expectations. They are considered to provide an important means for our Directors, the Executives and a wide group of managers and decision-makers to interact with local stakeholders and customers.

3.2.4 Online engagement

We continue to use our digital engagement platform <u>Talking Energy</u>¹⁸, as an effective tool to interact with targeted stakeholders, as well as a channel to reach a wider audience across Queensland as we engage on key energy topics and issues.

It has been especially useful in consulting with customers and stakeholders on issues relating to 'Queensland's Energy Future' as part of our Distribution Determination for 2025-30, and others such as our proposed updates to the Queensland Electricity Connection Manual (QECM), enabling dynamic customer connection for DER and for engaging community stakeholders interested in our Local Network Battery Plan, which is seeing utility-scale, network-connected batteries installed across Queensland to support the state's continued uptake of renewable energy.

3.2.5 Our customer research program

We continue to put our customers at the centre of our decision-making through measuring our customer and community satisfaction and trust in our business by obtaining insights from our CSAT and NTS research activities. These metrics are based on tracking research around our customer experience and social license or reputation that enables us to benchmark our brands against other businesses and encourages us to continually listen and improve, where required, to better deliver for our customers and communities.

To target service improvements, we also continue to survey the customer experience following our key service interactions for each customer group, from our residential to large business customers. Overall trends for satisfaction for each service, as well as specific feedback, from these surveys are used to inform both our business operations and strategic planning.

Additionally, the <u>Queensland Household Energy Survey (QHES)</u>¹⁹, funded by Energex and Ergon Energy Network in conjunction with Powerlink Queensland, tracks customer perceptions and overall attitudes to electricity prices and power supply reliability, as well as energy use and energy efficiency behaviours, and interest in emerging energy-related technologies.

These are also supported by a program of additional market research activities used to explore specific topics more deeply, where additional breadth and depth of customer insights on emerging matters is

_

¹⁸ Website: https://www.talkingenergy.com.au

¹⁹ Website: http://www.qhes.com.au/

required. For example, this year, we have conducted research with customers and industry in relation to EV charging behaviours to gain insights into information on charging options provided to customers during the EV purchase process, how that information is received and how it assists customers in making choices around their EV charging behaviours.

Additionally, our materiality assessment of our Environmental, Social and Governance issues, based on stakeholder feedback, continues to identify, and prioritise the topics that matter most to them and the customers and communities we serve. Regular assessment of these most material issues, as detailed in the Energy Queensland Ltd Annual Report 2024-25²⁰, Performance Report section, is important to maintaining a deep understanding of the contribution we can best make to sustainability, considering our rapidly changing operating environment, and the evolving priorities of stakeholders and issues important to the business.

Both our qualitative research (deliberative forums and focus groups), and quantitative research, is important to informing both our current, and future, asset management and other work program investments and revenue recovery plans.

3.3 What we have heard

Through our engagement activities we continue to hear the following key messages:

- Safety should never be compromised and it is an area where we could be 'smarter'
- Electricity affordability remains a concern for many customers both from a cost of living and a business competitiveness perspective
- Our communities and customers value how we go about keeping the lights on, especially our response to severe weather events and other natural disasters
- Our customers want greater choice and control around their energy solutions
- Interest in renewables and growing concerns around climate change is fuelling customer and community expectations around the transition to a low carbon economy
- The economic environment continues to bring 'energy inclusion and customer vulnerability' and 'economic resilience and jobs' to the foreground.

3.3.1 Safety

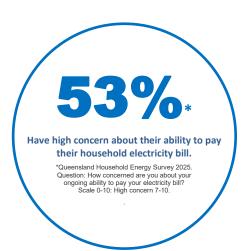
There is recognition across our customers and communities of the dangers of electricity, and that if the network is not appropriately managed it presents a risk to our customers, communities, and employees. We are expected to be vigilant, and to always make safety our priority.

Community information and education on electrical safety awareness is seen as important, especially around natural disasters.

Our customers expect that we continue to adopt technology and process improvements to look for smarter ways to deliver improved safety outcomes. Our highest performing 'trust driver' in our Net Trust Score research continues to be 'Is strongly focused on safety', followed by 'They are a local employer'.

3.3.2 Affordability

Pricing


Electricity affordability remains a concern for many of our customers, both from a cost of living and a business competitiveness perspective.

²⁰ Website: https://www.energyq.com.au/ data/assets/pdf file/0011/1747334/Energy-Queensland-Limited-Annual-Report-2024-25.pdf

We track price and affordability perceptions in our annual 2025 QHES²¹.

This year, as cost of living pressures persist, the number of customers in SEQ expressing high concern about their ability to pay their household electricity bill has remained steady, with (53%) highlighting 'high' concern.

Customers generally do not consider network charges separately to their retail electricity bill. They simply expect the industry as a whole to deliver affordable electricity prices, without compromising the safety, security, or reliability of supply, or customer service standards.

Network tariffs

Our customers are looking for electricity tariffs that offer simplicity, savings, value, and choice, and that reward them for their role in energy transition. Customers are also willing to explore different electricity tariff plans to better manage their bills.

In the 2025 QHES²¹, 53% of SEQ customers indicated their willingness to change how they use electricity to manage both peak and minimum demand if they had a better understanding of what the personal benefits would be, with 51% indicating interest in time of use electricity pricing where they would pay less during the day and more during the evening when peak demand is an issue.

While informed stakeholders recognise that network tariff reform is needed to respond to the changes in the market and to deliver sustainable charges for the future, engagement with customers on tariffs requires a program of sustained information and awareness to further advance reforms for future years.

are willing to change how they use electricity with a better understanding of the personal benefits.

"Queensland Household Energy Survey 2025. Question: Which of the following would encourage you to make changes to how you use electricity to help manage peak and minimum demand? Top answer selected: Knowing what the benefits are for me personally.

Fairness

It is clear that we have a corporate responsibility in providing an essential service to do all we can to address electricity affordability, and to deliver to all Queenslanders whether 'coast or bush'.

There remains concern around the ability of some to respond to the changes taking place in the industry. Together, we need to ensure everyone benefits equitably from solar and other emerging technologies and that customers in vulnerable circumstances are not left behind.

From a network tariff perspective, being 'fair and equitable' is both about minimising cross subsidies and managing the social and economic impact of any move to more cost reflective pricing.

There is also a need as a trusted advisor, for us to provide independent impartial advice, and to help customers make informed choices in their energy use and behaviours.

²¹ Website: http://www.qhes.com.au/

3.3.3 A secure supply – keeping the lights on

Emergency response

Queenslanders know that storms, cyclones, bushfires, floods, and other disasters are beyond anyone's control. Customers' feedback on the natural disaster events we responded to continues to show we respond well when these events occur and that our contribution is important to communities in getting them back up and running quickly. Customers' trust in the reliability of their electricity service has strengthened despite a period during which many were affected by power outages.

Of the SEQ participants in the 2025 QHES²², 63% agreed they have a positive sense of security around their electricity supply, with only 6% disagreeing. We continue to strengthen our understanding of the relationship between the experiences of individuals, first responders and front-line service providers in our disaster management planning and the 'gatekeeper' role electricity plays to planning and responding to disasters.

General perceptions of Queensland's energy supply have continued to improve, with most customers agreeing that they have a reliable supply of energy.

Of the SEQ participants in the 2025 QHES22, 77% agreed they were provided with a 'reliable energy supply.' Sentiment that current price and reliability are well balanced has also improved, despite cost of living pressures, with 76% of survey participants agreeing this year, an increase of 2% when compared to last year

have a positive sense of security around their electricity supply.

*Queensland Household Energy Survey 2025. Question: Please indicate on the scale below how much you agree with the following statements regarding Queensland's energy transmission and distribution providers (i.e., Powerlink, Ergon Energy and Energex). Answer: These energy suppliers give me a sense of security about my electricity supply. Scale 0-10; Agree 7-10

are satisfied with power supply reliability. This improved, despite ongoing supply challenges.

*Queensland Household Energy Survey 2025. Question: These energy suppliers provide my household with a reliable energy supply. Scale 0-10; Agree 7-10.

Customer experience

Our Customer Satisfaction (CSAT) measurement program, which involves surveying customers quarterly via an independent panel asking how satisfied they are with the network services received, provides us with an opportunity to track trends in our customers' sentiment, benchmarked against a range of other energy and non-energy related service providers. This year our Energex CSAT recorded a score of 70.2/100, just short of our target (71/100) for the year. Importantly, the key CSAT drivers tracked indicate that our customers are generally satisfied that we 'provide a reliable power supply' and in our ability to 'keep me [the customer] informed about outages' as the two top scoring key drivers, but that we have further progress to make in our drive to be 'customer focused', 'deliver value' and be 'easy to deal with', those being our three lowest scoring key drivers.

As our interactions and research indicates, expectations around the customer experience are generally increasing, especially around handling their enquiries in a timely manner and in regard to information and notifications on issues such as power outages. Many see outage updates and restoration times as important as preventing the initial outage, a fact highlighted through the 2025 QHES22 results, where of the 59% of SEQ respondents, who had experienced a power outage in the six months prior to the survey (61%), indicated they were satisfied with the time taken to restore electricity to their home following the outage, but only 44% satisfied with the communications around the outage, highlighting room for improvement in our power outage communications.

²² Website: http://www.qhes.com.au/

Customer and community engagement

Although the satisfaction with communications around the outage increased by 1% this year, compared to last year, it continues to highlight there is still room for improvement in our power outage communications.

Generally, our stakeholders support us in using technology to improve efficiency and reduce costs, but we note that the scale of our digital transformation program is significant and that this creates some stakeholder concerns around potential business and service disruption.

3.3.4 A sustainable future

Network as an enabler

Interest and uptake of energy technologies and solutions has softened in the past year as households postpone making significant purchases in the context of cost-of-living pressures. The number of households indicating their intention to consider installing new or additional solar energy this year is 23% (down from 27% last year), while those indicating their interest in purchasing a home battery storage system increasing, reflecting growing awareness of their potential to reduce energy bills. In the 2025 QHES23, 19% of SEQ respondents indicated their intention to purchase battery storage within the next three years with a further 23% indicating a desire to do so within the next 3-10 years. The key customer motivations for wanting to install a home battery being to reducing power bills (46%), to store their solar energy for use during peak times (52%), and increased selfsufficiency/to reduce dependency on the electricity grid (42%).

In the survey, 38% (down from 41% last year) of SEQ participants were aware of the concept behind community batteries. Conversely, customer unawareness rose to 55%, up from 51%. Despite this, (39%) indicating interest in being involved in a community battery scheme, such as a subscription to access community battery storage and supply.

The growth in solar continues to change the shape of load profiles across the day, and throughout the year, 'hollowing out' the load during the middle of the day. This has significant implications for the grid with the potential to impact system stability, and reverse power flows and voltage issues.

In the <u>2025 QHES</u>²³, just over half (52%) of our SEQ respondents indicated they are aware of the need to manage minimum demand on the electricity network, rising to 65% amongst those who have solar PV, the same percentage as last year.

With EVs potentially being a significant load on the network in the coming years, the 2025 QHES²³ also continued to track perceptions on EVs.

intend to purchase new or additional solar energy for their home within the next three years.

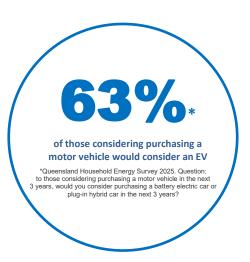
*Queensland Household Energy Survey 2025. Question: Do you intend to upgrade or replace your solar panels (solar PV system) for your home within the next three years/
Do you intend to purchase solar panels (solar PV system) for your home within the next 3 years?

52%

are aware of the need to manage minimum demand on the electricity network.

*Queensland Household Energy Survey 2025.
Question: The high uptake of rooftop solar PV systems leads to a surplus of household electricity sent to the grid and less electricity usage is required from the grid daily between 10am and 4pm.
This is known as minimum demand. Are you aware of the need for electricity distributors to manage minimum demand on the grid?

28


²³ Website: http://www.qhes.com.au/

Customer and community engagement

This year, of those SEQ survey participants who indicated they may purchase a motor vehicle within the next three years, 63% indicated interest in purchasing an EV. This is a slight increase (1%) compared

to the previous year's survey results indicating that serious consideration of EV purchase remains very strong.

Increasing this year, 36% of SEQ survey participants who own an EV told us they adjust either the settings within their EVs or their wall mounted charging equipment to set their charging times, followed by those who use a Home Energy Management System to set their charging times (19%), with 14% indicating their provider manages their EV charging on their behalf, less than the 18% who indicated they do not control charging at all other than when plugging it in.

Although only 14% indicated that their energy provider currently manages their EV charging schedule on their behalf, 66% did indicate that they were open to the concept of a third party, such as their electricity network provider, managing their charging schedule.

From earlier research we know our customers expect us to be able to facilitate and accommodate integration of renewables, battery storage and EVs into the network, without creating risks to network security, supply quality or performance.

Despite the challenges of managing solar on the network and keeping voltages within statutory limits, across our networks we are continuing to see a decrease in the number of quality of supply enquiries lodged by customers. However, the largest proportion of these continue to be concerns relating to solar PV related issues as listed in Chapter 10: Power quality.

Collaboration

Our customers, communities, and other stakeholders, expect us to keep them informed in a timely manner and engage with them transparently and meaningfully on a regular basis.

Findings from research into our business customers' experience during power outages showed that while customers were highly supportive of the networks' need to conduct work relating to reliability, there were opportunities to support customers in preparing contingency plans and improve communications.

Across our industry's peak bodies and other stakeholders there is a strong desire to engage and work with us to realise the benefits from today and tomorrow's emerging technologies, and a recognition of the valuable role the network provides in the energy transformation. This remains vital, with only a third (33%) of Queensland respondents to the Energy Consumers Australia Sentiment Survey 2024²⁴ confident the market is working in their long term interests. In the context of this, in our own research, we are gaining more of an understanding around trust – 'working to make electricity more affordable' and 'to do the right thing.'

Information and awareness will remain important. Customers need to be informed to take advantage of emerging technologies and participate in the market. Vulnerable customers must not be left behind with information important to removing barriers to participation.

Website: https://energyconsumersaustralia.com.au/sites/default/files/wp-documents/ecss-jun24-topline-results-report.pdf

Customer and community engagement

Our demand management program continues to be viewed positively, with our stakeholders expecting us to collaborate with, and provide incentives to, customers and the supply chain to assist in demand management delivery and uptake. This collaboration is being outworked by our Energex Demand Management Plan²⁵, which seeks to utilise customer and non-network service provider participation to address any network limitation.

Additionally, we have a variety of means to which stakeholders can become informed about network limitations and express interest and indicate ability for participation in non-network solutions, where practicable.

Connections

Reasonable, clear timeframes and costs for connections are critical to Queensland's economic development. Customers are seeking a simplification of our connection process, shorter time frames, and for continued equitable support of embedded generator connections. There continues to be support for our efforts to align our service offerings across Queensland.

To help ensure we can support Queensland's population and housing growth in the lead up to the 2032 Olympic and Paralympic Games, Energex has established a new 'Office of Powering Development' function to provide enhanced support to the property development sector and to boost customer connection timeframes.

3.4 Our customer strategy

In the last year as part of the group of companies within the Energy Queensland group of companies, we have also updated our <u>Customer Strategy</u>²⁶, that strives to deliver experience excellence for our customers in line with our <u>Strategic Plan 2032</u>²⁷. Our Customer Strategy is a principles-based framework approach that furthers our commitment to delivering for our customers by focusing on what matters most to them in our strategic and operational service and investment planning and activities. The principles shown in Figure 7 below, enable us to create a customer-centric culture and ensure customer needs and expectations are captured and considered.

20

²⁵ Website: https://www.energex.com.au/ data/assets/pdf file/0019/1085005/Demand-Management-Plan-2025-26.pdf

²⁶ Website: https://www.energyq.com.au/ data/assets/pdf file/0009/1589139/Energy-Queensland-Customer-Strategy.pdf

Website: https://www.energyq.com.au/ data/assets/pdf file/0020/1253081/EQL-Strategic-Plan-2032.pdf

Figure 7: Our customer strategy principles

Our Customer Principles

Each principle has a series of key focus areas identified and designed through conversations we have had with our people, customers and stakeholders that serve as a mechanism to show how each principle can be brought to life in meaningful, relatable and actionable ways.

We take the time and effort to listen to our customers and understand their differing needs.

- Use data to drive and communicate customer
- · Develop a complete view of the customer
- · Engage with customers to listen to their needs and co-design solutions

customers

We provide our customers with information and guidance to make informed choices around their electricity usage to maximise value.

- Communicate proactively to arm customers with relevant information
- Provide data and insights to customers about their electricity usage
- Provide guidance to customers on navigating the energy transition, and how they can maximise the value of their behind-the-meter investments

our customers

We strive to streamline and simplify our end-toend processes resulting in effortless customer experiences.

- Simplify end-to-end customer journeys
- · Use digital technology to enhance interactions
- Provide staff with tools and training to resolve customer issues

We collaborate with our customers, including our stakeholders and others in the energy industry, to deliver shared value.

- Understand the link between each business role and the end customer
- · Focus on customer affordability and value add - our success is measured through uplift in customer service performance metrics
- Enable our industry partners such as electrical contractors, retailers and other service providers to better deliver for customers

Chapter 4 Network forecasting

- 4.1 Forecast assumptions
- 4.2 Zone substation and feeder maximum demand forecasts
- 4.3 System maximum demand forecast

Forecasting is a critical element of Energex's network planning and is essential to the development of the electricity supply network. Growth in peak demand is not uniform across the state of Queensland, therefore electrical demand forecasts are used to identify emerging local network limitations and network risks needing to be addressed by either supply side or customer-based solutions. Peak demand forecasts then guide the timing and scope of capital expenditure (to expand or enhance the network), the timing required for demand reduction strategies to be established, or for risk management plans to be put in place.

A brief summary of the methodology and assumptions underpinning Energex's peak demand forecasts has been provided in this Chapter.

A <u>Strategic Forecasting Annual Report (Energex.com.au)</u>²⁸ is available detailing further discussion on the methodology and assumptions applied in the peak demand forecasts and including:

- Minimum demand forecasts
- Energy purchases and energy sales forecasts
- Customer number forecasts
- DER forecasts (solar PV, EVs and energy storage systems)
- Economic and demographic forecasts and commentary relating to population growth, Gross State Product (GSP) and the Queensland economic outlook.

4.1 Forecast assumptions

While there are a multitude of factors which influence each of the forecasts, there are also a number of key factors which have a wide-reaching impact.

4.1.1 Economic growth

The level of economic activity is a major influence on many aspects of our industry. While the impact of economic growth is felt most directly at the individual household and business level, it is not possible to build a model which takes every one of these into account. As such, higher level measures of economic activity are used where measures of current activity and forecasts are available. GSP projections are a key driver to many of our forecasting models.

Energex utilises Deloitte Access Economics to provide a detailed economic forecast for the Australian and Queensland economies – extending out to a 10-year forecast horizon. At the time of writing last year's report, inflation was cooling and the outlook for the global economy was improving. This year however, fighting in regional wars has either continued or intensified, and the US president has put forward a series of tariff proposals which have created an enormous amount of uncertainty – with the major economic forecasters (World Bank, The International Monetary Fund, and the Organisation for Economic Cooperation and Development), downgrading expectations for global growth.

For the Australian economy, there are a number of opportunities and risks. Cooling inflation creates expectations that the economy will eventually lift as interest rates are eased while the labour market and government spending remain strong. The key risks for the Australian economy are seen as being that the Reserve Bank of Australia may keep interest rates high for too long, and that the economic restart in China (following the end of COVID-19 restrictions there) will be subdued – as Chinese consumer sentiment remains low, the property sector remains unstable, and industrial production may slow with reduced global trade. This is an important market for Australia given that around 30% of Australia's exports are bound for China. Deloitte is expecting Australian GDP growth to be subdued at 1.3% for 2024-25 before rising to 2.0% for 2025-26.

²⁸ Website: https://www.energex.com.au/our-network/network-data/forecasting-reports

Deloitte expects the Queensland economy grew by only 1.5% over 2024-25, but is projected to grow by 1.9% in 2025-26. One of the many supports for the Queensland economy has been population growth. Queensland's population is estimated to have grown by 1.8% over 2024-25, but slow down over the next few years to between 1.2% and 1.6%.

With the evolving energy transition themes surrounding the renewables and new technologies, Energex will be producing DER forecast considering factors like the acceleration of the electrification of transport.

4.1.2 Solar PV

Solar PV has a significant load impact on our network, significantly impacting the energy forecast outlook. The impact of solar PV is based on profiles which have been constructed to predict generation (and export) for rooftop systems for all forecast scenarios. Beginning in 2023-24, Energy Queensland engaged Blunomy Consulting to provide a DER (which includes solar PV, EVs and Energy Storage Systems) forecast for both Energex and Ergon Energy networks respectively.

A 0.5% per-annum degradation factor is used for solar PV systems. Small systems are designed to generate energy for the home with excess energy exported. Commercial-scale installations are larger and may or may not export to the grid. Utility-scale solar farms are designed to export.

Figure 8 illustrates the impact that solar PV has on the Energex summer system peak demand. Energex 2024-25 Summer system peak demand was 5,839MW at 17:30 on 22 January 2025 as the temperatures at Amberley hit a maximum of 37.0 degrees Celsius. It is estimated that solar PV reduced the peak by around 309MW at this time.

Recorded MW Solar MW 7,000 6,000 oad without Solar Energy Generation Load MW 5,000 oad with solar **Energy Generation** 4,000 3,000 **Estimated Solar** 2.000 **Energy Generation** 1.000 0 -00:60 07:00 08:00 00:01 11:00 Time of Day

Figure 8: System demand - solar PV impact, 22 January 2025

Impact of solar on peak demand (Energex)

historical impact, forecasting its future impact, and re-incorporating it into the overall system forecast.

Historically, temperature was the major variable on peak demand (after systematic factors such as time of day and day of year). However, the scale of solar PV generation means that cloud cover can create variations in generation output (thereby changing the source of supply to Powerlink) in addition to variations in air conditioning load from temperature changes.

4.1.3 Electric vehicles and energy (battery) storage systems

Mainstream uptake of EVs and Plug-in Hybrid EVs (PHEVs) will increase energy and demand forecasts over the forecast horizon. The uptake rate of EVs and PHEVs has historically not been high due to a combination of factors including the high initial cost and low availability of various vehicle types. However, it is anticipated that EV numbers are likely to have a significant increase through time as more vehicle types are on offer in the market and as the EV prices edge closer to parity with the internal combustion engine counterparts. Therefore, the impact factored into the system demand forecast has been relatively small in the earlier years of the forecast but increases over time with the growing population of vehicles. Nonetheless, it is expected that in the early years the majority of the uptake of EVs will be in SEQ. Eventually uptake in regional areas will accelerate with the EV forecasts assuming that 100% of all vehicle sales will be EV in the distant future.

Although EV charging can be bi-directional the Energex forecast does not consider any Vehicle to Grid (V2G) impact in the profiles. This is due to a low number of vehicles available with the technology and network connection policy and tariffs that are not currently conducive to significant V2G uptake at the household.

Customer interest in energy storage systems (batteries of various kinds) continues to increase with the number of known energy storage systems in the Energex network being approximately 22,080, with a capacity of 322.2MWh as of end of June 2025.

Over the next five to ten years energy storage will continue to grow with:

- Government backed incentives
- Increasing energy prices
- Falling prices as battery storage production increases in scale
- New technology (safer, higher energy densities, larger capacities) and
- Package-deals of solar PV and battery storage systems promoted by major retailers and solar PV installers.

Energex's forecasting model is based on an average typical hot summer day demand profile for residential and business customers, with the marginal impact of EVs, batteries and solar PV incorporated into that profile. The impact of energy storage on the customer's energy consumption profile is 'behind the meter' which means that it cannot be directly measured. It is assumed the proportion of consumer storage installations that are part of orchestrated control (such as virtual power plants) will increase over the forecast period. This orchestration will have an effect of increasing load when market price signals are low or negative and increasing generation when signals are high.

Historically, there has been no compulsory reporting mechanism for EV charging equipment or battery storage systems. Therefore, limited amount of high-quality data surrounding the number and size of batteries being installed makes accurately forecasting the larger scale impact over time more difficult.

4.1.4 Temperature sensitive load

Temperature sensitive loads such as air-conditioning, and refrigeration are major drivers of peak demand load on the network. The most extreme loads seen on the network over a year can be driven by a combination of hot (and usually humid) weather conditions during times of high industrial and commercial activity (the scale of solar PV generation now creates other possibilities for extreme loads - refer Figure 8 above). At the system level, the modelling process has continued to be refined over the years, with population replacing air-conditioning as a driver as it is better able to represent the impact of broader range of electrical appliances during the extreme conditions.

Several weather stations are required to capture the variability of weather conditions across the network.

The process also requires a long history of quality weather data without many data anomalies. Weather data from the following stations has been sourced from the Bureau of Meteorology (BOM), based on their representativeness of the weather in key population regions, and the quality of their extended weather history.

- Amberley
- Archerfield
- Brisbane Airport
- Coolangatta
- Maroochydore.

If a small proportion of observations were missing, they were either estimated or substituted with data from nearby stations. The zone substation forecasting methodology also utilises weather data, all zone substation load is modelled using Archerfield weather data, due to missing data issues and conservative temperature readings for coastal adjacent weather stations. Forecast methodology does allow for the use of other weather station data on a per substation basis where Archerfield does not produce satisfactory results. Further details of the substation forecasting process are detailed below.

4.2 Zone substation and feeder maximum demand forecasts

The forecasting process provides the ability to predict where extra capacity is needed to meet growing demand, or new assets are required in developing areas. Energex reviews and updates its temperature-corrected, system summer peak demand forecasts after each summer season, and each new forecast is used to identify emerging network limitations in the sub-transmission and distribution networks. The bottom-up substation peak demand forecast is reconciled with the system level peak demand forecast, after allowances for network losses and diversity of peak loads. This process accounts for drivers which only become significant at the higher points of aggregation (e.g., economic, and demographic factors), while also enabling investment decisions to be based on local factors. Hence, individual substation and feeder maximum demand forecasts are prepared to analyse and address limitations for prudent investment decisions.

A key driver of substation growth is population growth. The Queensland Government Statisticians Office (QGSO) population forecast is used to predict customer growth using the Australian Bureau of Statistics (ABS) Statistical Area Level 2 (SA2) areas, which are applied to each zone substation based on proportion of customers included in the SA2 area. Historical customer growth is correlated with the SA2 population forecast to apply weighting to substations that have recent growth, over substations where growth has plateaued.

The take-up of solar PV is continuing as electricity prices rise and the cost of solar PV falls, and the emerging influence of EVs and battery storage systems has been incorporated at the system and substation levels of forecasting.

The forecasts produced post-summer 2024-25 have provided a range of demand growth rates, with many established areas remaining static while other areas like the northern Gold Coast, and the southern Sunshine Coast growing strongly. The forecasts are used to identify network limitations and to investigate the most cost-effective solutions which may include increased network capacity, load transfers or demand management alternatives.

While growth in peak demand at the system levels is comparatively modest at around 1.8% over the forecast horizon, there can be significant growth at a localised substation level.

In the 2025-30 period, the percentage compound growth rates of zone substations were as follows:

- 6% of substations have an annual compound growth rate at or below 0%
- 60% have an average annual compound growth rate between 0% and 2%
- 29% have an average annual compound growth rate between 2% and 5%
- 5% of zone substations have an annual compound growth rate exceeding 5%.

Demand management initiatives have an impact on peak loads at a number of zone substations. The initiatives include broad application of air-conditioning control, pool pump control and hot water control capability. Demand management is also being targeted at substations with capacity limitations as an effort to defer capital expenditure. The approach used is to target commercial and industrial customers with incentives to reduce peak demand through load shift, generation and call off load agreements. When communicated and known the resulting reductions are captured in the Substation Investment Forecasting Tool (SIFT) and in the ten-year peak demand forecasts.

The ten-year substation peak demand forecasts are prepared at the end of summer and are produced within SIFT. To enable appropriate technical evaluation of network limitations, these forecasts are completed for both existing and proposed substations. The forecasts are developed using data from internal sources as well as the ABS and the QGSO. Economic and demographic influences are incorporated via the reconciliation with system demand forecasts. Independently produced forecasts for economic variables and photovoltaic installations, EVs and battery storage systems uptake are also sourced from Deloitte and Blunomy Consulting respectively.

Output from solar PV is generally coincident with Commercial and Industrial (C&I) peak demands, and there has been a significant uptake in solar PV for C&I premises. While this will provide benefits for those parts of the network which peak during times of significant PV generation, there are many other areas of the network which peak later in the afternoon/evening, where the impact of PV generation on the peak may either be limited or non-existent.

4.2.1 Zone substation forecasting methodology

Energex employs a bottom-up approach, reconciled to a top-down evaluation, to develop the ten-year zone substation peak demand forecasts. Load history is modelled against key weather features to produce a simulated peak demand 50 and 10 Probability of Exceedance (PoE) starting load profile. Growth forecasts are summated and added on to the starting load profile for each of the components listed:

- Customers (residential count and business energy)
- PV solar (not including solar farms)
- Battery storage systems (not including utility scale)
- EV charging.

The planning team provides local insights where relevant, as well as project, block load and load transfer information that is also added to the profile.

The peak demand forecasts are produced for:

- The 50PoE and 10PoE levels
- Each zone substation
- Summer and Winter
- Base, Low and High scenarios.

Zone substation starting load profiles are based on a probabilistic approach using a multiple regression estimation methodology on each half hour period. The variables used in the regression model are daily

average, maximum, minimum temperature, dew point, workday and a trend line representing timeline. This approach has the advantage of incorporating a range of variability into the predictions. The impact of estimated solar generation is removed before modelling the load.

A Monte Carlo simulation using BOM daily weather history is used to calculate the 10PoE and 50PoE peak demand starting profiles for each zone substation. Solar generation estimation is included in the simulated load results. This solar generation is calculated based on current PV capacity values. The trend line variable is simulated to current time, so organic load growth is captured. Forecast growth rates are then calculated using the summated component profiles as listed above. Growth rates, load transfers and new large customer loads are then incorporated into the future load at each zone substation.

The zone substation forecasts are successively aggregated up to the bulk supply, and transmission connection points, to create forecasts at those levels – after taking diversity and losses into account. This aggregated forecast is then reconciled with the independent system demand forecast and adjusted as required.

The process sequence used to develop the ten-year substation demand forecast is briefly described as follows:

- Validated uncompensated substation loads are analysed, typically for 5 years of history
- · Various techniques are employed to remove bad load data, obvious load transfers, outages etc
- The load data is adjusted to reflect a "native load", by adding back the load estimated to have been offset by solar PV generation.
- Many industrial substations tend not to have much temperature sensitivity, as their load can
 vary due to a range of other factors. If the model cannot explain the variance of the load, then
 the modelled predictions are not used in the simulation. As a result, these 50PoE and 10PoE
 values are based on Monte-Carlo simulation of actual load history
- Individual component profile forecasts for customers, solar PV, battery storage, and plug-in EVs are calculated for each substation
- Previous substation peak demand forecasts are reviewed against temperature-adjusted results as part of a process looking for the causes behind individual variations
- Starting values for apparent power (MVA), real power (MW) and reactive power (MVAr) are calculated for the key benchmarks of "summer day", "summer night", "winter day", and "winter night"
- The size and timing of block loads, transfers and projects are reviewed and validated with Grid Planning and Network Management teams before inclusion in the forecast
- The different elements of the forecast growth rates, block loads, transfers are combined and applied to the starting values to produce a 10-year demand forecast
- The substation peak demand forecasts are reviewed extensively and compared with previous forecasts, with a focus on the relative error between recorded demand and the forecast for the most recent season. If necessary, adjustments are made to incorporate late information or factors not able to be included in the forecasting model
- Zone substation forecast peak demands are then aggregated up to bulk supply substation, and transmission connection point, levels (after allowing for coincidence and losses) to produce forecasts at those network levels. The zone substation forecast is "reconciled" against the system peak demand forecast to ensure that factors only evident at the distribution level (e.g., load increases driven by expected economic growth), are incorporated into zone substation forecasts. This is done by calibrating relevant zone substations' growth rates so that the sum of the forecasts equals the system; at the time of the coincident peak, this then flows through to an adjustment of the zone substation's local peak which can occur at a different time.

Zone substation forecasts are based upon a number of inputs, including:

- Network topology (source: corporate equipment registers)
- Load history (source: corporate SCADA (Supervisory Control and Data Acquisition)/metering database)
- Known future developments (new large customers, network augmentation, etc.)
- Customer categorisation (SIFT)
- Temperature-corrected start values (calculated by the FLARE forecasting model)
- Forecast growth rates for organic growth (calculated by the FLARE forecasting model).
- System maximum demand forecasts.

The impact of Embedded Generation on the Energex forecasted peak and minimum demand are estimated for each zone substation using the solar PV and Battery Energy Storage Systems uptake forecast and their corresponding demand load profiles. This is based on the medium DER uptake scenario for solar PV and battery storage systems forecast, sourced by Blunomy Consulting for all zone substations. The forecasted Embedded Generation for each zone substation is disaggregated from the systems level forecast based on the historical DER penetration rates across each individual zone substation in the forecast. The demand load profiles for solar PV are then estimated by modelling the historical relation between available solar PV inverter capacity and the measured solar irradiance hourly profiles based on a typical peak demand and minimum demand day.

EVs are not considered as part of the embedded generating unit category as the V2G technology is at its infant stage, and the DER forecast suggests that EVs would have an impact on the network from a peak demand perspective rather than generation.

The forecast use of distribution services (export) by embedded generating units are estimated from each zone substation's load profile forecast. The uptake of solar PV systems is pushing the middle of the day load towards zero and causing reverse power flow in some parts of the network. This reverse power flow has been utilised to represent the zone substation export caused by the Embedded Generation. The Embedded Generation export for each zone substation is forecasted on both peak and minimum demand events using the medium DER uptake scenario forecast and demand profiles.

4.2.2 Distribution 11kV feeder forecasting methodology

Essentially the base methodology for distribution feeders' growth forecast is the same as zone substations. The main difference between feeder and substation forecasts is the feeder forecasts are not managed with the SIFT program and are not reconciled with the system level forecasts. The growth values for feeders are reported into NETPLAN from FLARE.

The load history for many Energex feeders is recorded in current (amps) only, meaning there is no power flow directionality. For the minimum demand forecast only, these load currents are run through a reverse power flow machine learning model that categorises each load interval as forward or reverse power. The resultant directional load is converted to real power and is used in the load history analysis model.

4.2.3 Sub-transmission 110kV and 132kV line forecasting methodology

A simulation tool is used to model the 110kV and 132kV sub-transmission network. The software was selected to align with tools used by Powerlink and the Australian Energy Market Operator (AEMO).

Powerlink provides a base model on an annual basis. This base model is then refined to incorporate future network project components. Two network loading scenarios are considered: native load and load with DER and generation integration. For the load scenario peak forecast loads at each bulk supply, zone substation and connection point are loaded into the model from SIFT. For the DER scenario, the DER forecast is determined and integrated into the SIFT loading. Registered generators

have been excluded from the models as their dispatch is managed by AEMO and control schemes are in operation to limit their impact to the network.

Twenty models are created using this simulation tool, with each model representing the forecast for a particular season in a particular year. The models have five years of summer day 50PoE and 10PoE data and five years of winter night 50PoE and 10PoE data.

4.2.4 Sub-transmission 33kV line forecasting methodology

Forecasts for sub-transmission feeders are produced for a five-year window aligning with the capital works program. Sub-transmission forecasts identify the anticipated maximum loadings on each of the sub-transmission feeders in the network under a normal network configuration.

Modelling and simulation are used to produce forecasts for the sub-transmission feeders. The traditional forecasting approach of linear regression of the historical loads at substations is not applicable since it does not accommodate the intra-day variation. The modelling approach enables identification of the loading at different times of day to equate to the line rating in that period. A software tool models the 33kV sub-transmission network. The simulation tool has built-in support for network development which provides a variable simulation timeline that allows the modelling of future load and projects into a single model.

Simulation models are created using existing network data. Future projects are then modelled with timings and proposed network configurations based on future project proposals being included. Future projects are automatically activated depending on the network analysis dates selected. The forecast peak loads at each substation for all years within the planning period are uploaded into the model from the SIFT. Eight models are produced, each containing forecast load for the different seasons. These include summer day, summer night, winter day and winter night, combined with 10PoE or 50PoE peak load. This enables the identification of worst-case risk period for each season.

These models are replicated for two network load scenarios that have been considered, native load and loading with DER and generation integration. The native load scenario provides indication of areas of the network that may require augmentation due to load, impacts of phenomenon like solar masking being considered. The DER and generation integration scenario highlight areas of the network that have high penetration of generation and capacity constraints or areas where capacity for Embedded Generation remains.

4.3 System maximum demand forecast

Energex reviews and updates its ten-year 50PoE and 10PoE system summer peak demand forecasts after each summer season and each new forecast is used to identify emerging network limitations in the sub-transmission and distribution networks. For consistency and robustness, the substation peak demand forecast ('bottom-up') is reconciled with the system level peak demand forecast ('top-down'), after allowances for network losses and diversity of peak loads.

The 'top-down' forecast is an econometric ten-year system maximum demand forecast based on identified factors which affect the load at a system-wide level. Inputs for the system maximum demand forecast include:

- Economic growth through the Gross State Product (source: ABS website and forecasts by Deloitte)
- Weather variables (e.g., temperature, rainfall, global horizontal irradiance (source: BOM))
- Population (source: Deloitte)
- Solar PV generation (source: customer installation data and Blunomy Consulting)
- Load history (source: corporate SCADA/metering database)
- EVs (source: Blunomy Consulting)

Energy Storage (source: Blunomy Consulting).

The 'bottom-up' forecast consists of a ten-year maximum demand forecast for all zone substations (also described as 'spatial forecasts') which are aggregated to a system total and reconciled to the econometrically derived system maximum demand. These zone substation forecasts are also aggregated to produce forecasts for Bulk Supply Points and Transmission Connection Points. Further details are available in the Zone Substation Forecasting Methodology section.

In recent years, there has been considerable volatility in Queensland economic conditions, weather patterns and customer behaviour which have all affected total system peak demand. The influence of Queensland's moderate economic growth has had a moderating impact on the peak demand growth through most of the state. At the same time, weather patterns have moved from extreme drought in 2009, to flooding and heavy rain in recent years, to extended hot conditions over the past several summer periods. Summer conditions in recent years have produced new record high maximum demands.

4.3.1 System demand forecast methodology

The methodology used to develop the system maximum demand forecast as recommended by consultants ACIL Tasman is as follows:

- Develop a multiple regression equation for the relationship between demand and GSP, weighted maximum temperature, weighted minimum temperature, three continuous hot days, weekends, Fridays and Christmas period and November to March temperature data that excludes days with average temperature at selected weather stations that are below the set levels (for example, weighted mean temperatures < 22°C and daily maximum temperature < 28.5°C). Three weather stations were incorporated into the model through a weighting system to try to capture the influence of the sea breeze on peak demand. Statistical testing is applied to the model before its application to ensure that there is minimal bias in the model</p>
- An error factor is applied to the simulated demands based on a random distribution of the multiple regression standard error. This process attempts to define the peak demand rather than the regression average demand
- A Monte Carlo process is then used to simulate a distribution of summer maximum demands using the latest 30 years of summer temperatures plus an independent ten-year GSP forecast.
 That distribution of demands is used to identify the initial 50PoE and 10PoE maximum demands
- Those initial 50PoE and 10PoE values are then calibrated to account for demand management initiatives, solar PV, battery storage and the expected impact of EVs. That is, the impact of DER is included via a post-model adjustment.

Important measures used in this methodology consist of the following:

- The actual maximum coincident (or peak) demand, is the highest rate of supply over 30-minute intervals over a season (summer or winter) during a year
- A 50PoE demand/level is the calculated estimate of a maximum demand that would be expected for an average season for that year. The 10PoE demand/level is the maximum demand that could be expected in an extreme season; (a 1 in 10-year event)
- The 50PoE and 10PoE estimates of demand, enable growth estimates to be calculated without being distorted by variations in seasonal intensity. As such, the industry considers them the most accurate and reliable indicator of future demand in the network.

4.3.2 Medium, high, and low case scenarios

Peak demand is impacted significantly by weather and economic conditions, population growth and technology adoption. Base, high, and low scenarios are created by combinations of the economic forecasts, Monte Carlo simulations on summer daily temperatures and the DER post-model adjustments. While higher or lower levels of the individual DER components can vary positively or negatively with peak demand, the DER factors are incorporated as an aggregate impact with the DER scenario aligning with the corresponding peak demand scenario. The results of the forecasts are compared in Figure 9.

Demand management load reductions are included in the forecast. The scenario's presented are based partly on DER scenarios developed by Blunomy Consulting. The medium, high, and low cases are designed to capture future uncertainties and risks.

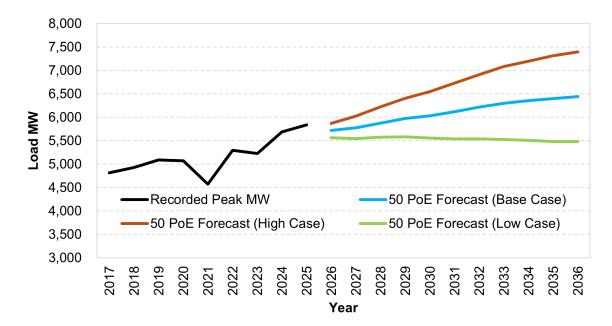


Figure 9: Three scenarios of EGX summer peak MW forecasts @ 50PoE level

Energex's 2024-25 Summer system peak demand was 5,839MW between 5:30 and 6:00 pm on 22 January 2025 as the temperatures at Amberley hit a maximum of 37.0 degrees Celsius. This raw peak is 2.7% higher than the previous year, a new record high.

This year's peak underscores the underlying growth and scale of load that is in the network. The latest forecast projects that the 50PoE peak demand will increase from 5,372MW in 2024-25 to 6,396MW in 2034-35, which equates to the 1.8% growth per year compounded annually.

Investment in new infrastructure is still required as additional areas are connected and the number of connected customers continues to grow. However, the visibility of this growth is being masked by changes in the existing base of customers via increasing energy efficiency, solar PV installations and demographic changes that are happening at lower levels of the network. Table 2 summarises the actual and temperature-corrected (50PoE) demands based on a range of weather station temperatures and associated maximum demand changes over the past five years. Along with the actuals, the summer and winter 50PoE values have been calculated to illustrate the underlying network growth. However, as these figures were derived from each year's model, yearly comparisons of the 50 PoE temperature corrected demands should only be made using a series of numbers from the same model.

Yearly peak demands vary due to changes in key drivers including (but not limited to) temperatures, cloud cover, the behaviour of customers etc. Extreme seasons provide valuable insights into the potential future loads for both average and extreme seasons.

Table 2: Actual maximum demand growth - SEQ

Demand ¹	2020-21	2021-22	2022-23	2023-24	2024-25
Summer Actual (MW)	4,573	5,292	5,228	5,687	5,839
Growth (%)	-9.8%	15.7%	-1.2%	8.8%	2.7%
Summer 50% PoE (MW)	4,976	5,105	5,240	5,282	5,372
Growth (%)	-0.2%	2.6%	2.7%	0.8%	1.7%
	2020	2021	2022	2023	2024
Winter Actual (MW)	3,878	3,894	4,427	3,797	4,403
Winter Actual (MW) Growth (%)	3,878 3.5%	3,894 0.4%	4,427 13.7%	3,797 -14.2%	4,403 16.0%
	,	<u>'</u>	,	,	,

Note 1: The Summer and Winter Actual Demand has been adjusted to include the load that was offset by embedded generation operating at the time of System Peak Demand.

Table 3 lists the maximum demand forecasts over the next five years. The increase relative to last year's forecasts reflects the recent robust summer peak demands revealing more underlying load than anticipated. Summer peak demands over the 2024-25 – 2034-35 period are forecast to increase with a compounding annual growth rate of 1.8%, reaching 6,396MW in 2034-35.

Table 3: Maximum demand forecast (MW) - SEQ

Forecast ^{1, 2}	2025-26	2026-27	2027-28	2028-29	2029-30
Summer (50% PoE)	5,716	5,775	5,871	5,971	6,027
Growth (%)	6.4%	1.0%	1.7%	1.7%	0.9%
Summer (10% PoE)	6,100	6,174	6,283	6,392	6,462
Growth (%)	6.4%	1.2%	1.8%	1.7%	1.1%
	2025	2026	2027	2028	2029
Winter (50% PoE)	2025 4,222	2026 4,295	2027 4,357	2028 4,443	2029 4,489
Winter (50% PoE) Growth (%)					
	4,222	4,295	4,357	4,443	4,489

Note 1: The five-year demand forecast was developed using three weather station weighted data as recommended by ACIL Allen.

Note 2: The demand forecasts include the impact of the forecast economic growth as assessed in May 2025.

The forecast of solar PV generation, EVs and Battery Storage Systems at the time of summer peak demand is shown in Table 4.

Analysis indicates that the continued growth of solar PV will reduce loads during daylight hours, causing system peak demands to occur slightly later in the day towards the end of the forecast horizon – this time shift changes the scale of the solar PV impact at peak time. Energex has also developed a model for the adoption of battery storage with the impact on peak demand being driven by large solar PV customers with little or no feed-in tariffs (FIT).

There are an increasing number of solar PV customers with systems that provide more electricity than they can use internally during the day but are not receiving the 44 cents per kWh FIT. These customers are likely to be very interested in battery storage and are seen to be the early adopters. The projected impact of battery storage systems on system peak demand is shown in Table 4. The model assumes that battery storage will primarily be charged by solar PV and discharged over the late afternoon and early evening period between 4pm and 8pm with an initially small but growing impact on the system peak demand.

Table 4: Contribution of solar PV, EVs and BESS to summer system peak demand

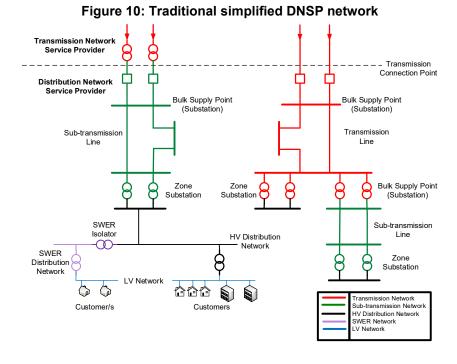
Impact on Summer System Peak Demand (MW)	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Solar PV Generation	-262	-279	-295	-311	-325	-339	-352	-365	-380	-396
EV Load	24	36	53	78	114	160	213	267	322	376
Battery Storage Systems Load	-20	-23	-26	-30	-37	-43	-52	-66	-91	-120

Chapter 5

Network planning framework

- 5.1 Background
- **5.2** Planning methodology
- 5.3 Key drivers for augmentation
- 5.4 Network planning criteria
- 5.5 Plant thermal rating
- 5.6 Voltage limits
- 5.7 Fault levels
- 5.8 Planning of customer connections
- 5.9 Large customer connections and embedded generators
- 5.10 Joint planning
- 5.11 Network planning assessing system limitations

5.1 Background


Energex's Network planning framework aims to provide a balance between the customers' need for a safe, secure, reliable, and high quality electricity supply with the customers' desire for a minimal service cost. A key part of the network planning process is to optimise the economic benefits of network augmentation and renewal facilitating "non-traditional" options beyond the boundaries of the network, such as demand management, Embedded Generation solutions and other approaches. Addressing of network limitations and risks is at the core of the planning framework to ensure the solutions are optimal to meet current and future requirements.

The selection of the optimal network and business solution is achieved by:

- Determining and critically assessing key network limitations
- Developing and evaluating a broad range of network and non-network solutions
- Seeking to integrate and optimise outcomes using a variety of planning inputs
- Staging of project phases to ensure prudent expenditure.

This section outlines the network planning criteria, process and framework that underpins our network planning approach.

Figure 10 illustrates a traditional simplified Distribution Network Service Provider (DNSP) network which typically consists of sub-transmission, High Voltage (HV) distribution, and Low Voltage (LV) networks supplying customers at all voltage levels. It should be noted, as highlighted in other areas of this document, this traditional network topology is changing as we see greater numbers of embedded generators (and storage technology) at all voltage levels. This increased complexity and diversity at all levels within the network are creating both opportunities and challenges in the planning of the electricity supply network.

46

There are several definitions essential to the understanding of Energex network planning philosophy. Reliability of supply is the probability of a system performing adequately under normal operating conditions. A reliable network that meets service obligations is an important objective and is dependent on two measures - adequacy and security.

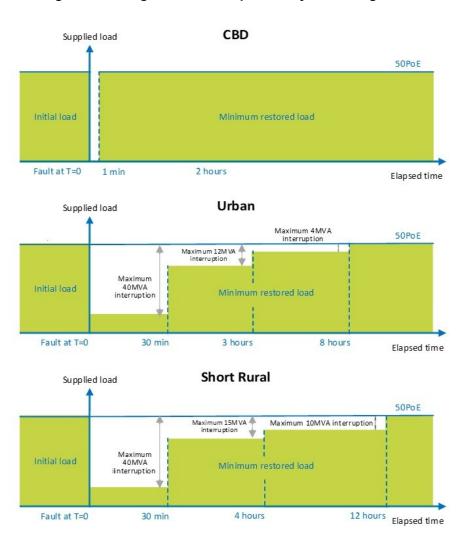
Adequacy is the capacity of the network, and its components, to supply the electricity demand in accordance with acceptable quality of supply standards. It includes requirements that network elements operate within their thermal ratings, whilst maintaining voltage within statutory limits.

Security is the ability of the network to cope with faults on major plant and equipment without the uncontrolled and prolonged loss of load. A secure network often factors in redundancy of major plant and equipment to tolerate the loss of single elements of the system. Energex plans network investment to meet its Safety Net targets as shown in Table 5 and Figure 11 The standard allows Energex to make use of available transfers and non-network capabilities and is inherent in the assessment of security standard compliance. Energex planning standard for sub-transmission networks considers the Value of Customer Reliability (VCR) and obligated Safety Net targets, with the later embedded in our Distribution Authority, to alleviate the adverse outcomes of low probability, high consequence events. Since 2021 Energex has incorporated a risk quantification framework into its planning methodology, along with incorporating the AER's Customer Export Curtailment Value (CECV) framework.

Energex's network planning framework considers the following key factors:

- Feeders and substations are assigned a category according to the criteria defined in the Distribution Authority (CBD, Urban, Rural) and the appropriate Safety Net target is assigned to relevant network types
- Plant and power line thermal ratings depend upon their ability to discharge heat and are therefore appreciably affected by the weather, including ambient temperature and, in the case of overhead lines wind speed
- A range of actions to defer or avoid investments, such as non-network solutions, automated, remote, and manual load transfer schemes and the deployment of a mobile substation and/or mobile generation, increase utilisation of network assets
- Value of Customer Reliability is utilised to justify and optimise investment timing
- Specific security requirements of large customer connections that are stipulated under the relevant connection agreements or in the application of Safety Net.

The Energex distribution network is also required to maintain voltage levels within legislative requirements and ensure safe operation under fault conditions. These requirements are addressed during the annual planning review. In general, the factors that impact demand growth, plant thermal rating limitations, load transfer capabilities and asset condition which, combined with planning and security criteria, risks and security of supply, network performances, non-traditional solutions and overall economics of potential investment are embedded in the network planning process.


Table 5: Service safety net outage and restoration targets by unsupplied load

Area/designation	Unsupplied Load	Allowed Outage Duration
CBD	No MVA limit	≤ 1 minute
	0MVA (full restoration)	> 1 minute
Urban	≤ 40MVA	≤ 30 minutes
	≤ 12MVA	>30 minutes ≤ 3 hours
	≤4MVA	> 3 hours ≤ 8 hours
	0MVA (full restoration)	> 8 hours
Short Rural	≤ 40MVA	≤ 30 minutes
	≤ 15MVA	> 30 minutes ≤ 4 hours
	≤ 10MVA	> 4 hours ≤ 12 hours
	0MVA (full restoration)	> 12 hours

Note 1. All modelling and analysis will be benchmarked against 50PoE loads and based on credible contingencies.

Note 2. Outages ≤3 minutes in duration would be excluded from Safety Net Targets, as they are for Minimum Service Standard (MSS) for reliability measures

Figure 11: Energex restoration profiles by area/designation

5.2 Planning methodology

5.2.1 Strategic planning

Energex's planning process involves production of long-term strategic network development plans. These plans assess the electricity supply infrastructure requirements for defined areas based on the most probable forecast load growth projections. Scenario analysis is used to develop alternative network development plans for a range of economic forecasts, population growths, and new technologies (such as PVs, EVs, and BESS). Demographic studies based on local government plans are carried out to help indicate the likely long-term demand for electricity across a development area. These include scenario modelling to test various outcomes, such as high or low customer response to demand management, tariff reform and energy efficiency initiatives.

The strategic planning process is an iterative and analytical process that provides an overall direction for the network development of a region. The purpose of strategic network development plans is to ensure the prudent management and investment for network infrastructure in both the short and long term, and to coordinate developments to address constraints and meet utilisation targets.

Strategic network development plans detail the results of the long-term strategic forecasting and network planning studies that produce the set of recommendations for proposed works over the study period for a specific supply area. This includes:

- Details of all proposed works over the study period, including variations and dependence on different trigger factors
- Recommendations for easement and site acquisitions required in advance of any proposed works, including variations and dependence on trigger factors.

The long-term nature of strategic planning means that there is significant uncertainty around the estimations of ultimate load growth (worst case scenario) and exact location of load. The output of the strategic planning process gives direction to the medium and long-term recommendations, while allowing strategic site and easement acquisition and approvals to proceed. Specific outcomes of strategic network development plans may be used to identify areas where non-network solutions have potential to defer or avoid network augmentation. These are ongoing and reviewed as required.

5.2.2 Detailed network planning studies

In order to address the forecast network limitations and ensure ongoing safe and reliable operation of the network, network augmentation and replacement project options for a specific site/network are identified in the detailed planning studies. As requirement dates for recommended works within each strategic network development plan draw closer or where unforeseen customer initiated development changes occur, more detailed localised network planning studies are performed. The shorter term detailed planning studies are conducted to identify all existing and anticipated network limitations within a seven-year horizon. Energex is using strategic area plans that encompass sub-transmission, distribution, non-network and, where significant, asset renewal planning functions.

These planning studies are conducted at the sub-transmission and distribution level to consolidate and assess any other factors that may have a material impact on the studied network. This usually includes an assessment of:

- Non-network alternatives
- Transmission Network Service Provider (TNSP) network changes
- Fault levels
- Voltage levels
- Security of supply requirements

- Quality of supply and network reliability considerations
- Asset age, condition, and renewal
- Customer connections activity
- Compliance with standards and regulations
- Local, state, and federal government decisions and directions.

Based on the network requirement dates, and/or the target completion dates, each capital project is then investigated in detail for the preparation of comprehensive business cases, regulatory documents, and project approval reports in accordance with the NER and Energex standard practices, procedures, and policies. This process ensures the current and future adequacy of the Energex sub-transmission and distribution networks. The information informs regulatory processes through the RIT-D, joint planning, and demand side engagement activities.

The planning process for a network segment involves the following major steps in a typical routine planning cycle:

- Identify network risks/limitations in the system
- Validate load forecasts
- Evaluate the capability of the existing system
- Formulate network options to address these risks/limitations and identify any feasible nonnetwork solutions from prospective proponents
- Compare options on the basis of technical and economic considerations
- Select a preferred development option
- Undertake regulatory public consultations for projects as required, and carry out detailed evaluation upon receipt of any alternative solutions from the registered participants/ proponents
- Initiate action to implement the preferred scheme through formal project approvals.

Project planning and approvals are currently carried out in accordance with the RIT-D requirements applicable for the projects having credible options estimated at more than \$7 million as of 1 January 2025. The previous RIT-D threshold of \$6 million was applied prior to January 2025.

5.3 Key drivers for augmentation

Network augmentation can be the result of changes in customer requirements, load growth, aged assets, upstream augmentation works, network reconfiguration or large customer works that impact the shared network.

There are four general types of customer activities that can cause constraints in Energex's distribution system and prompt the need to invest:

- 1. Organic growth that occurs when existing customers increase or change the profile of their electricity usage in a part of the network, or across the network. For example, the increase in air conditioner installations in the 1990's or the installation of solar systems in recent years
- 2. Increases in the number of residential or small commercial customers in a part of the network
- 3. Block loads connecting to a part of the network, such as new large commercial or industrial customers
- 4. Changes/installation of medium to large scale embedded generators and/or storage technology.

Without network augmentation or non-network investment, customers' increased demand can result in load demand exceeding planning limits (including component capacity/ratings, voltage regulation limitations and protection limit encroachment) and/or the breach of network security criteria.

Augmentation works within our network can also be driven by Powerlink, as the TNSP. Work on Powerlink's network may also require compulsory activity within our network to ensure the transmission network integrity and capacity can be delivered to the distribution network. Such activity could be the result of increased fault levels or plant rating limitations. These types of augmentation activities are analysed and reviewed as part of the Joint Planning process conducted between Energex and Powerlink (or other DNSPs) as required by the NER.

5.3.1 Demand forecast

Reasonably accurate demand forecasting is essential to the planning and development of the electricity supply network. Energex has adopted a detailed and mathematically rigorous approach to forecasting of electricity demand, and customer numbers. These methods are described in detail in Chapter 4: Network forecasting. Energex also undertakes regular audits and reviews by external forecasting specialists on its forecasting models. Demand forecasts are not only undertaken at the system level but are also calculated for all substations and feeders for the forward planning period.

These forecasts are used to identify emerging network limitations and risks that need to be addressed by either network or non-network based solutions. These forecasts are then used as an input to determine the timing and scope of capital expenditure, or the timing required for demand reduction strategies to be established, or risk management plans to be put in place.

5.3.2 Asset age and condition

Energex has an extensive Asset Lifecycle Management program which is discussed in detail in Chapter 8. An important output of this program is the identification of equipment which is nearing end of life due to condition and/or age. In the case of major plant items, such as power transformers, high voltage circuit breakers etc. the end-of-life information is considered within the planning process as a "network limitation," just like any other (capacity) network limitation. Hence, the options to either refurbish, replace, or retire the plant item is considered in the context of network safety, security, and reliability standards.

5.4 Network planning criteria

Network planning criteria is a set of rules that guide how future network risk is to be managed or planned for, and under what conditions network augmentation or other related expenditure (such as demand management) should be undertaken.

There are two widely recognised methodologies for the development of planning criteria for power systems:

- Deterministic approaches (e.g., N-1, N-2, etc.)
- Probabilistic (risk-based) approaches.

Energex is required under Distribution Authority No. D07/98 to adhere to the deterministic planning approach where full consideration is given to the network risk at each location, including operational capability, plant condition and network meshing with load transfers.

These criteria consider many factors including the capability of the existing network asset, the regulated supply standards (such as voltage, quality, reliability, etc.), the regulatory framework around investment decision making, the magnitude and type of load at risk, outage response capability and good electricity industry practice. Consideration is given to the complexity of the planning process versus the level of risk, allowing for simpler criteria to apply where lower risks exist and where the cost of potential investments is smaller.

While the probabilistic planning criteria is far more complex in application than deterministic, it increases the focus on customer service levels:

- Customer Value Investment predominantly driven by the benefits gained from a reduction in the duration of unplanned outages (i.e., VCR), but also including (where applicable) other classes of market benefits
- Mandatory Investment: this includes the regulated standards for the quality of supply as per the NER, and the Minimum Service Standards (MSS) and Safety Net requirements in the Distribution Authority and any other regulatory obligations.

For increased confidence on the network investments, proposed investments that are <u>not</u> mandatory must have a positive Net Present Value (NPV) when all significant costs and benefits are accounted for, over a reasonable evaluation period (usually 20 years). While mandatory investments may not be NPV positive, different options and benefits are still considered for each project with the lowest present cost option being selected for progression. All investments are risk ranked and prioritised for consideration against Energex's budget and resource levels, with some network risks managed operationally.

5.4.1 Value of customer reliability

In December 2024, the AER published the revised VCR values, which are essentially the values that NEM customers place upon reliability.

According to the AER Review, the VCR:

"seek to reflect the value different types of customers place on reliable electricity under different conditions. As such, VCRs are useful inputs in regulatory and network investment decision-making to factor in competing tensions of reliability and affordability. Importantly, VCR is not a single number but a collection of values across residential and business customer types, which need to be selectively applied depending on the context in which they are being used "

Components of VCR calculation include:

- Energy at Risk: the average amount of energy that would be unserved following a contingency
 event, having regard to levels of redundancy, alternative supply options, operational response,
 and repair time
- Probability of the contingency occurring each year at a time when there is energy at risk
- Network losses between the metering point and the customer
- Customer mix, by energy consumption across various customer sectors.

The first three factors are combined to calculate the 'annualised probability-weighted Unserved Energy in MWh. The last factor, customer mix, is combined with the AER VCR tables to calculate the 'energy-weighted locational VCR' (in \$/MWh). Finally, the two are multiplied to calculate the annual economic cost of unserved energy (VCR) associated with the given contingency (or contingencies). By also considering load growth and (for example) plant ageing, estimates of the annual VCR are calculated across the evaluation period (usually 60 years).

Changes in VCR associated with a particular project (or option) represent a benefit (if positive), or a cost (if otherwise) that is used as a benchmark to assess proposed solutions. To be comparable, proposed solutions are required to be expressed in terms of annualised costs or annuities. By balancing the VCR and the cost of supply, a more efficient service can be provided to our customers.

5.4.2 Value of Network Resilience (VNR)

The AER introduced a new measure named Value of Network Resilience (VNR) in September 2024. This measure is intended to support and enhance the existing VCR methodology.

The VNR supports network investments driven by a network's ability to:

- withstand events; for example, hardening investments (e.g., composite poles, area bundled cables, undergrounding), network topology (i.e., supply path redundancy), design standards, and Stand Alone Power Systems (SAPS)
- recover from events; for example, standby mobile substations and generators, contingency standby crews, network automation, design standards (e.g., design for repairability) and communications with customers before and during outages.

It is anticipated that this new measure will be introduced in full capacity in the 2025-30 regulatory term.

5.4.3 Safety Net

While the VCR approach described above provides an effective mechanism for keeping costs low while managing most network risk; low-probability, high-consequence events could still cause significant disruption to supply with potential customer and/or significant community hardship or economic issues.

The Safety Net requirements outlined in the Distribution Authority address this issue by providing a set of 'security criteria' that set an upper limit to the customer consequence (in terms of unsupplied load) for a credible contingency event in the Energex network. Energex is required to design, plan and operate its network to meet the restoration targets defined in Schedule 3 of Energex's Distribution Authority as shown in Table 5 and Figure 11 above "...to the extent reasonably practicable".

This statement acknowledges that regardless of level of preparation, there will always be combinations of circumstances where it is impossible to meet the restoration targets at the time of an event, though these should be rare. For example, if it is unsafe to work on a line due to adverse weather conditions, though these should be rare. In addition, during the planning phase, where the risk of failing to meet the target timelines is identified as being of very low probability, investment to further mitigate the risk would generally not be recommended, as per industry best practice. This risk is also addressed with larger customers that enter a negotiated connection contract with Energex, as the parties are able to agree upon the particular terms of the supply arrangement, including when and to what extent there may be restrictions on supply. Energex considers this approach strikes an appropriate balance in meeting the safety net targets while ensuring that investments in the network are prudent and efficient, and meets customer expectations of a secure, reliable, and affordable supply.

Load transfer capability

Energex Safety Net integrates the full use of load transfers between sub-transmission systems and zone substations. These use the sub-transmission or distribution feeder networks to reduce the impact of an outage in the event of a major plant failure. Load transfer capabilities for each zone substation are calculated using load flow studies, considering the thermal ratings and voltage stability of the network. The transfer amount applies throughout the forward planning period. In addition, more detailed load transfer studies are incorporated during individual project planning phases.

Efficient investments under the Safety Net provisions will provide mitigation for credible contingencies that could otherwise result in outages longer than the Safety Net targets.

A Safety Net review of the network's sub-transmission feeders with zone and bulk supply substations are performed annually to examine the network transfer capabilities, forecasts, substation asset ratings, bus section capabilities, network topologies and protection schemes. Further work is undertaken to ensure items within the operational response plans are outworked, this may include asset spares, location of specialist machinery, access conditions and skills of crews. Energex annually reviews the

inventory of mobile substations, skid substations and mobile generation and site suitability, to apply injection, if required to meet Safety Net compliance.

Energex continues to review the changing state of the network for Safety Net compliance as part of the normal network planning process, ensuring that care is taken to understand our customers' needs when considering the competing goals of service quality against cost of network.

5.4.4 Risk quantification and Customer Export Curtailment Value (CECV)

Energex has also incorporated a risk quantification methodology into its planning analysis. This framework provides a way to monetise items such as safety, environmental or bushfire risks. In July 2024, the AER published updated Customer Export Curtailment Value (CECVs) for 2024/25 based on AEMO's updated inputs and assumptions. This methodology provides a mechanism to monetise the value of reducing DER generation export due to network limitations and where appropriate help to provide justification for network augmentation.

5.4.5 Distribution networks planning criteria

Distribution feeder ratings are determined by the standard conductor/cable utilised and installation conditions/stringing temperature. Consideration is also given to the impacts made by Electro-Magnetic Fields (EMF) as well as increasing load and customer counts on the reliability of distribution feeders. Target Maximum Utilisation (TMU) is used as a trigger for potential application of non–network solutions or capacity improvements for the 11kV network.

CBD, and critical loads

In the Energex CBD scenario, and for loads that require full supply redundancy to manage contingencies, meshed networks are utilised. Meshed networks consist of multiple feeders from different bus sections of the same substation interconnected through common distribution substations. A mesh network can lose a single component without losing supply to the customer – with the loss of any single feeder; the remaining feeders must be capable of supplying the total load of the mesh.

In a balanced feeder mesh network, each feeder supplies an approximately equal amount of load and has the same rating, as the name describes. Any feeder in a balanced three-feeder mesh should be loaded to no more than 67% utilisation under system normal conditions at 50PoE. Any feeder in a balanced two-feeder mesh should be loaded to no more than 50% utilisation under system normal conditions at 50PoE.

Meshed networks are more common in the denser Brisbane CBD areas where high reliability is critical and thus the loss of a single feeder should not affect supply.

Urban feeders

In relation to Safety Net an Urban Feeder is an interconnected feeder, with ties to adjacent feeders. A feeder with effective ties to three or more feeders should be loaded to no more than 75% utilisation under system normal conditions at 50PoE.

Following the loss of a feeder, utilising ties to other feeders allows supply to be restored to the affected feeder without overloading the tie feeders.

Values of TMU may need to be adjusted to ensure that there is adequate tie capacity to adjacent zone substations in accordance with the security standard.

It is recognised that tie capacity may not be available under all loading conditions because of voltage limitations.

Short rural feeders

For a point load that has no ties, or a short rural radial feeder, the TMU will be capped at 80% at 50PoE, unless the supply agreement specifically requires a different value.

5.4.6 Consideration of distribution losses

Distribution losses refer to the energy loss incurred in transporting energy across the distribution network. They are represented by the difference between energy purchased and energy sold. Energex includes all classes of market benefits (including network losses) in its analysis that it considers to be material for all projects, including those under the RIT-D and those projects where there is a material difference in losses between options.

5.5 Plant thermal ratings

Plant ratings for the Energex network are informed by the Energy Queensland Standard for Plant Rating (Manual) which is based on the relevant Australian and International Standards. This standard prescribes how Energex operates, designs, and plans its electricity network in a manner that allows plant to operate to its maximum capability, without unnecessary risk to Energex employees and the community during both network normal, and contingency network conditions.

The proliferation of large-scale renewable generation and the continuing and unabating increase in rooftop solar installations is challenging how network constraints are derived, with power flows now having to be considered for both load and generation. Plant ratings now consider generation power flows (reverse power flows) in addition to traditional load flows.

The plant thermal rating methodology encompasses the current carrying components of all primary plant, including overhead conductors, underground cables, power transformers and substation HV equipment.

Consideration must also be given to both the time of day, and the climate zone in which electrical plant operates, as both of these variables impact the thermal limitations and capacity of plant.

Generation power flows differ from load power flows due to their constancy, and plant ratings for generation power flows are typically lower than those for the same magnitude of load power flows.

5.5.1 Time of day

In the context of static ratings, a day is split into day, evening, and night for both summer and winter as shown in Table 6. The shoulder seasonal months of April, May, September, October, and November are generally rated with summer parameters.

Ratings are stored in the Energex corporate database (ERAT2) as summer and winter ratings. The ratings applied for summer use the summer daytime block and the ratings for winter use the winter evening time block. These summer day and winter evening time blocks have been used to plan the Energex networks.

Table 6: Time of day definition

Description	Abbreviation	Indicative time
Summer Day	SD	Dec-Mar, 6am to 6pm
Summer Evening	SE	Dec-Mar, 6pm to 10pm
Summer Night/Morning	SN	Dec-Mar, 10pm to 6am
Winter Day	WD	Jun-Aug, 6am to 6pm
Winter Evening	WE	Jun-Aug, 6pm to 10pm
Winter Night/Morning	WN	Jun-Aug, 10pm to 6am

5.5.2 Climate zones

An alignment of the plant rating philosophies between Energex and Ergon Energy was completed during a review of the Joint Energex and Ergon Energy Plant Rating Manual. The process involved a review of the environmental weather conditions and operational time blocks for overhead static line ratings. As a result of this review, the South-East climate zone has been introduced as shown in Figure 12, with ambient temperature and wind speed climate parameters shown in Table 7.

All overhead line assets in the area covered by the Energex network will maintain their existing ratings calculated using the legacy environmental conditions and assumptions. The new plant rating methodology will be applied to newly installed overhead feeders.

Table 7: Energex distribution area climate parameters

Summer	SD		S	E	SN	
	Wind (m/s)	Ambient (°C)	Wind (m/s)	Ambient (°C)	Wind (m/s)	Ambient (°C)
South-East	1.3	35	8.0	31	0.6	27
Winter	WD		WE		WN	
	Wind (m/s)	Ambient (°C)	Wind (m/s)	Ambient (°C)	Wind (m/s)	Ambient (°C)
South-East	1.2	24	0.5	18	0.5	18

Figure 12: EQL climate zones

5.5.3 Overhead line ratings

Overhead line ratings are based on environmental conditions such as minimum wind speed, maximum ambient temperature; wind angle; conductor material properties; conductor emissivity and absorptivity; as well as reflectance and solar radiation. The wind speed, ambient temperature and wind angle have the most significant effect on the line rating.

Default weather parameter values used by Energex to calculate the overhead line ratings are shown in Table 7 above.

To determine the feeder capacity for planning purposes the following methodology has been applied:

- Overhead lines current carrying capacities are aligned to the climate zone with appropriate
 design ratings. The default overhead rating parameters used are listed in Section 5.5.2 and in
 Table 7 above. Where the feeder backbone conductor decreases in size, the smaller conductor
 has been used in cases where there is minimal load upstream of the smaller conductor
- Alignment of the rating with the feeder load profile. While summer day is predominantly the rating restriction, low wind speeds in the morning and evening can cause network limitations.
- Loads caused by abnormal network configurations have been discounted when determining peak demands.

Where the existing conductor operating temperature is not known, a thermal rating of 75°C has been used. The ratings used are intended to maintain statutory clearances and maintain the working life of the conductors whilst obtaining the maximum capacity.

In design of curtailment schemes for renewable and other types of generation, a maximum threshold of 100°C is applied to overhead lines to ensure that generators ramp back at a sufficient rate to maintain conductor temperatures below 100°C with consideration given to climate assumptions.

5.5.4 Power transformers

Transformer ratings have been determined using EQL's Standard for Plant Rating (Manual). The Normal Cyclic Capacity (NCC) rating determines the upper limit to which zone substation transformers should be loaded under normal cyclic operating conditions.

The NCC rating is dependent on the transformer condition; nameplate rating; applied loading profile; historical ambient temperatures and allowable loss of life. Transformer rate of ageing is limited to 'one day per day' loss of life when calculating the NCC rating.

There are individual cases where the rating applied is the nameplate rating where the transformer is in poor condition or due to generator connected loads.

Most of the Energex power transformer fleet has remote temperature monitoring of their critical internal components. This real time temperature monitoring performs a vital role in the risk management of the transformers when the more arduous ratings are in force. Energex applies up to three different thermal ratings for power transformers dependant on network conditions:

- The Normal Cyclic Capacity (NCC) rating is the maximum permissible peak loading for the applied load cycle that a transformer can supply, given weighted ambient temperatures, without reducing the design life of the transformer
- The Emergency Cyclic Capacity (ECC) rating is the maximum permissible peak loading for the applied load cycle that a transformer can supply without transgressing any of the physical temperature limitations of the materials of which the transformer is constructed. This rating is only applicable in substations where more than one power transformer shares the load, which is usually the case in Energex substations. This rating allows time for the repair/replacement of faulty plant

• The Short Time Emergency (2HEC) rating is the maximum permissible loading for the given load cycle that a transformer can supply for up to two hours, immediately following the loss of one of the transformers in a multiple transformer zone substation. By the end of the two-hour period, the load must be reduced to at least the emergency cyclic rating. This rating allows for load transfers.

5.5.5 Generators

For generators connected to Energex network reverse power flows through Energex transformers are limited to the name plate rating with the base cooling mode of Oil Natural Air Natural (ONAN) unless remote monitoring with back up is available. Ageing studies conducted as part of any connection process may apply further restrictions.

5.5.6 Switchgear & cable ratings

HV switchgear is rated in accordance with AS 62271. HV switchgears also have a number of ratings which are based on the applied load cycle, ambient temperatures, and the thermal mass of the individual switchgear. The default rating is the manufacturer's nameplate rating of the switchgear.

Underground cables are rated in accordance with IEC 60853 and IEC 60287 supported by Energex environmental assumptions.

5.5.7 Real time capacity monitoring ratings

The use of real time capacity monitoring in the network is currently being explored by Energex.

5.6 Voltage limits

5.6.1 Voltage levels

Energex's HV distribution network consists of 4 different voltage levels. Table 8 contains the system nominal and the system maximum voltage that equipment is typically manufactured to operationally withstand, and as such the maximum voltage levels that can be imposed without damaging plant.

System Nominal Voltage	System Maximum Voltage
132kV	145kV
110kV	121kV
33kV	36kV
11kV	12kV

Table 8: System operating voltages

5.6.2 Sub-transmission network voltages

Target voltages for bulk supply substation busbars are set in conjunction with Powerlink. In general, the sub-transmission busbars at Powerlink Connection Points are operated without Line Drop Compensation (LDC) and with a fixed voltage reference or automatic Volt Var Regulation (VVR) set point.

Sub-transmission network configuration can impact the voltages on the downstream network. Energex maintains the voltages at the customers' connection points according to connection agreements where the customers are supplied directly at the 132kV, 110kV or 33kV levels. For all other situations, the sub-transmission network aims to maintain voltage levels at the substation 11kV buses within a target range. Energex utilises automatic schemes to control the voltages, accounting for the difference in voltage that can occur on the secondary side of substations between periods of maximum demand and light load, and during single contingency outage conditions or high solar PV penetration. A voltage limitation occurs if a target bus voltage cannot be maintained. The target range depends on various factors such

as the type and magnitude of load, customer category, and connection agreement. This is typically 11.2kV in urban areas and 11.3kV in rural areas during peak load times.

Augmentation of the sub-transmission network may be required when voltage limitations occur on the sub-transmission network under system normal conditions with 10PoE forecast loads, or under N-1 conditions with 50PoE forecast loads consistent with the Safety Net.

Where it can assist in meeting voltage limits, VVR should be applied on zone substation transformers to optimise the voltage regulation on the distribution network. In some instances, issues such as the distribution of load on individual feeders may mean that VVR is not a feasible solution.

Voltage limitations are identified as part of the simulations carried out and described in Section 4.2.2: Distribution 11kV feeder forecasting methodology and Section 4.2.3: Sub-transmission 110kV and 132kV line forecasting methodology and are also reported in the limitations tables contained in Appendix C.

5.6.3 Distribution network voltage limits

Target voltages on zone substation busbars are set by Energex as relevant. These zone substation busbars are operated with either LDC; a fixed voltage reference or Automatic Voltage Regulator set points. Downstream voltage regulators may also be set with LDC or a standard set point.

For distribution systems, the network is operated at supply voltage standard at a customer's point of connection with considerations made to regarding the variable impacts of the different LV network configurations on subsequent LV customers' supply voltage.

Augmentation of the distribution network generally occurs when voltage limitations occur on the distribution network under system normal conditions with 10PoE forecast loads, or under N-1 conditions with 50PoE forecast loads.

Table 9 provides an indicative level of the maximum HV voltage drops in the distribution network, to ensure acceptable supply voltage to LV customers. The drop defined is from the zone substation bus to the feeder extremity, for steady state conditions or 10-minute aggregate values.

Energex targetsMaximum voltage drop – no LDCMaximum voltage drop – LDCUrban5%7%Rural7%10%

Table 9: Steady state maximum voltage drop

5.6.4 Low Voltage (LV) limits

There are over 55,000 LV circuits in the Energex network. Energex is required to manage the voltage on these LV circuits within a tolerance range of 230 volts + 10%/-10% (253 volts to 207 volts). However, from a planning and design perspective, and to accommodate increasing rooftop solar installations, Energex continues to manage LV circuits in the range 230 volts +10%/-6%, as per the previous standard. There are many factors which impact the voltage present at the customer connection point, including voltage regulation settings at the zone substation, 11kV and LV network planning and design practices as well as customer owned installations such as embedded generators. In particular, the influx of solar PV systems connected to the LV network has added a new level of complexity to voltage management.

Energex has traditionally relied upon maximum demand indicators to identify limitations on distribution transformers. This approach is no longer adequate, and Energex is now rolling out distribution transformer monitors. These monitors, along with customer feedback, are now being used to identify

areas of voltage non-compliance. Remedial works are being targeted initially to minimise the risk of damage to customer equipment from voltage excursions with high volts having the highest priority.

Energex has explored a number of remediation works to manage voltage levels of LV networks which include:

- Changes to the LDC or VVR settings at the zone substation
- Resetting distribution transformer taps
- Rebalancing of the LV network with an emphasis on the solar PV load
- Upgrading of the transformer or installation of a new transformer (to reduce the lengths of LV circuits)
- Increasing the LV conductor size
- Installation of targeted transformer monitoring devices in response to network LV changes and PV installations.

Augmentation of the LV network may be required where rebalancing of customer loads and solar connections or resetting the distribution transformer taps is not sufficient to ensure voltages are maintained within statutory limits. In this case, it is required to reduce the voltage drop through the transformer and LV circuits typically by uprating or installing a new transformer and reconfiguring the LV network. Low Voltage Regulators (LVR) and Statcoms may also provide an additional reinforcement option.

Maximum customer voltage variance

The National Electricity Rules (NER) gives utilities the authority to specify the customer supply voltage range within the connection agreement for HV customers above 22kV. The National Electricity Rules requires Root Mean Square (RMS) phase voltages to remain between ±5% of the agreed target voltage (determined in consultation with AEMO), except for at times following a contingency event, where the supply voltage shall remain between ±10% of the system nominal RMS phase to phase voltage except as a consequence of a contingency event.

In Queensland, for customers less than 22kV, the Electricity Regulation 2006 specifies steady-state (i.e., excluding transient events such as transformer energisation) supply voltage ranges for LV and HV customers. Table 10 details the standard voltages and the maximum allowable variances for each voltage range.

Nominal Voltage

<1000V</p>
(230V Phase to Neutral 400V Phase to Phase)

1000V - 22,000V
Nominal voltage +/- 5% or as agreed

>22,000V
Nominal voltage +/- 10% or as agreed

Table 10: Maximum allowable voltage variance

The values in Table 10 assume a 10 minute aggregated value and allow for 1% of values to be above this threshold, and 1% of values to be below this threshold.

5.7 Fault levels

Fault levels on the Energex network are affected by factors arising within the Energex network or externally, such as the TNSP's network, generators, and customer connections.

Fault level increases due to augmentation within the Energex network are managed by planning policies in place to ensure that augmentation work will maintain short circuit fault levels within allowable limits.

Fault level increases due to external factors are monitored by annual fault level reporting, which estimate the prospective short circuit fault levels at each substation. The results are then compared to the maximum allowable short circuit fault level rating of the switchgear, plant, and lines to identify if plant is operated within fault level ratings.

Energex obtains upstream fault level information from TNSPs annually and changes throughout the year are communicated through joint planning activities as described in Section 5.10.1.

New connections of Distributed Generation and Embedded Generation which increase fault levels are assessed for each new connection to ensure limits are not infringed. Known embedded generators are added to Energex simulation models so that the impacts of these generators on the system fault levels are determined.

5.7.1 Fault level analysis methodology

Energex performs fault level analysis at all bulk supply point and zone substation HV and LV buses in our network.

These studies are undertaken using Energex sub-transmission network model which has been developed and prepared using the PowerFactory network modelling software program. A transmission network model has been provided by Powerlink and merged with the sub-transmission model at all of Energex respective transmission connection points.

Short circuit simulation studies are carried out for 3-phase, 2-phase to ground and 1-phase to ground faults in accordance with IEC 60909 Short-circuit currents in three-phase A.C. systems. Studies are performed to obtain both maximum and minimum fault levels for specific network configurations.

All short circuit simulation results are stored in a database which is then validated and analysed prior to publishing. For meshed networks, additional analysis is carried out to identify the fault current contribution of individual circuits, hence identifying the current which a breaker is subjected to under a fault condition. Equipment having a rated short circuit withstand below the observed fault level are then identified.

5.7.2 Maximum fault level analysis

The maximum fault level studies are based on system normal network configuration where all network elements remain as per their normal state.

The network sources used to obtain maximum fault levels for both the system normal and system maximum network configuration are based on Powerlink's maximum generation dispatch scenarios for fault level analysis purposes.

Based on the IEC 60909 standard, the maximum fault level analysis studies are carried out based on the following assumptions:

- A voltage factor of 1.1 is used to create a driving voltage of 1.1 p.u.
- Major network connected generators are assumed to be in operation
- All transformers are fixed at nominal tap
- Conductor temperature of 20°C.

5.7.3 Minimum fault level analysis

The minimum fault level studies are based on two possible network configurations:

- System Normal: where all network elements remain as per their normal state
- System N-1: where a single item of plant is removed from service to produce the minimum fault level result for that substation.

The network sources used to obtain minimum fault levels for both the system normal and system N-1 network configuration are based on Powerlink's minimum generation dispatch scenarios for fault level analysis and system strength assessment purposes. Based on the IEC 60909 standard, the minimum fault level analysis studies are carried out based on the following assumptions:

- A voltage factor of 1.0 is used to create a driving voltage of 1.0 p.u.
- All network connected generators within the Energex network are assumed to be offline
- All transformers are fixed at nominal tap
- Conductor temperature is referred to the maximum operating temperature.

5.7.4 Standard fault level limits

Table 11 lists design fault level limits that apply at Energex installations.

Network Type Voltage (kV) **Existing Installation New Installation** Current (kA) **Current (kA)** 25 / 31.5 / 40 Sub-transmission 132 40 (1s) Sub-transmission 110 25 / 31.5 / 40 40 (1s) Sub-transmission 33 13.1 / 25 25 (3s) Distribution 11 13.1 25 (3s)

Table 11: Energex design fault level limits

While Table 11 presents design fault ratings, new equipment typically has ratings higher than these figures, however, some old equipment may have lower ratings. Hence, site specific fault levels are considered in planning activities for network augmentations or non-network solutions to ensure the fault level does not exceed the ratings of the installed equipment.

It should be noted that these fault levels are quoted with a 1 second duration, and a faster protection clearing time will be considered where appropriate. This can be further investigated when fault levels approach limits.

Where fault levels are forecast to exceed the allowable fault level limits, fault level mitigation projects are initiated.

5.8 Planning of customer connections

Customer Initiated Capital Works (CICW) are defined as works to service new or upgraded customer connections that are requested by customers connected to or connecting to, the Energex network. As a condition of our Distribution Authority, Energex must operate, maintain, and protect its supply network in a manner that ensures the adequate, economic, reliable, and safe connection and supply of electricity

Network planning framework

to our customers. It is also a condition that it allows, as far as technically and economically practicable, its customers to connect to its distribution network on fair and reasonable terms.

Energex has a <u>Connection Policy</u>²⁹ that details the circumstances in which a customer must contribute towards the cost of its connection and how it is to be treated for regulatory purposes. This Policy came into effect on 1 July 2025.

5.9 Large customer connections and embedded generators

Energex is committed to ensuring that, where technically viable, large customers are able to connect to the network. A Large Customer Connection (LCC) process is available on our website which aligns with the connection processes in Chapters 5 and 5A of the NER. We have a dedicated LCC support Team to support large customer inquiries and connections. Information on the processes can be found on our website³⁰.

The process generally applies to proposed connections where the intended Authorised Demand (AD) or load on our network exceeds 1,000kVA (1MVA) at a single site.

Energex also has clear processes for the connection of Embedded Generating systems, which applies to Embedded Generations of 30kVA and above. The processes may vary depending on the size of the generating unit and whether the system is exporting into our network. These processes are also listed on our website³¹.

The connection of any Large Customer and/or EG systems will require a technical assessment. This assessment will consider the effect that the connection will have on existing planning and capacity limitations (including component capacity/ratings; voltage regulation limitations and protection limit encroachment; system stability and reliability; fault level impacts and the security criteria). This assessment is necessary to ensure that Energex continues to operate the network in a manner that delivers adequate, economic, reliable, and safe connection and supply of electricity to its customers.

5.10 Joint planning

5.10.1 Joint planning methodology

Energex conducts joint planning with distribution network service providers and transmission network service providers as required. Joint planning involves Ergon Energy in the vicinity of Toowoomba and Gympie; while Essential Energy, Powerlink, TransGrid and Terranora Link are involved in the vicinity of the NSW & Queensland border.

The joint planning process ensures that different network owners operating contiguous networks, work cooperatively to facilitate the identification, review, and efficient resolution of options to address emerging network limitations from a whole of distribution and transmission network perspective. In the context of joint planning, geographical boundaries between transmission and distribution networks are not relevant. Joint Planning follows the same principles and considerations outlined in Section 5.4 above in developing proposed solutions and engaging with stakeholders.

For joint planning purposes, the primary focus is to ensure that network capacities are not exceeded. These limits relate to:

Thermal plant and line ratings under normal and contingency conditions

²⁹ Website: https://www.energex.com.au/ data/assets/pdf_file/0017/1009052/Energex-Connection-Policy-2025-30.pdf

³⁰ Website: https://www.energex.com.au/our-services/connections/large-customer-connections

³¹ Website: https://www.energex.com.au/our-services/connections/large-customer-connections/large-high-voltage-DER-systems

Network planning framework

- Plant fault ratings during network faults
- Network voltage to remain within acceptable operating thresholds
- Replacement of ageing or unreliable assets
- Network stability to ensure consistency with relevant standards.

5.10.2 Role of Energex in joint planning

Joint planning often begins many years in advance of any investment decision to address a specific emerging network limitation. Timing is reviewed annually, with detailed planning and approval completed based on the forecasted need and the lead time to complete the project. In this process, there is a steady increase in the intensity of joint planning activities, which typically would lead to a regulatory investment test consultation (either RIT-T or RIT-D). Among other things, the scope and estimated cost of options (including anticipated and modelled projects) is provided in published regulatory investment test documents consistent with the NERs.

Through this process Energex is tasked with:

- Ensuring that its network is operated with sufficient capability, and augmented, if necessary, to provide network services to customers
- Conducting annual planning reviews with TNSPs and DNSPs whose networks are connected to the Energex network
- Developing recommendations to address emerging network limitations through joint planning with DNSPs, TNSPs and consultation with Registered Participants and interested parties as defined by the National Electricity Rules. Net present value analysis is conducted to ensure cost-effective, prudent solutions are developed. Solutions may include network upgrades or non-network options, such as local generation and demand side management initiatives
- Undertaking the role of the proponent for jointly planned distribution augmentations in South East Queensland
- Advising Registered Participants and interested parties of emerging network limitations within the time required for action
- Ensuring that its network complies with technical and reliability standards contained in the NER and jurisdictional instruments.

5.10.3 Joint planning and joint implementation register

A register has been set up to capture all information relating to limitation identification, planning, consultation and subsequent project implementation between Energex and external parties. This ensures joint activities are tracked throughout the lifetime of a project, from the time a limitation is identified to final commissioning of the chosen solution. The register is shared with the respective TNSP or DNSP and is updated regularly.

5.10.4 Joint planning with Powerlink

In the past 12 months Energex has actively engaged with Powerlink on the following joint planning studies. These limitations have network drivers that have a notional target date in the forward planning period (2025-26 to 2029-30) as summarised in Table 12 below.

Additional joint planning activities have occurred in the past 12 months for network drivers on the Energex, Ergon Energy and Powerlink networks that notionally occur beyond the forward planning period.

Table 12: Joint planning activities covering 2025-26 to 2029-30

Energex Works Estimated Cost (\$ M)	Project Description	Indicative Timing	2024 DAPR Reported Timing	Comments
\$19.4M	Raceview 110/33kV Transformer Replacement (Energex Project)	Feb-30	NA	Proposed replacement of deteriorated asset.
\$18.2M	Jimboomba 2 nd 110/33kV Transformer (Energex Project)	May-29	NA	Additional capacity required to support load development.
\$0.6M	Cooroy Plant Overload Protection Scheme (Energex Project)	Oct-28	NA	Proposal to split 132kV feeder ring following a fault on Powerlink network.
ТВА	Molendinar Secondary Systems Replacement and WAMPAC scheme (Powerlink Project)	Jan-27	NA	Energex scope to be defined
ТВА	Tennyson 110/33kV Transformer Replacement (Powerlink Project)	Jun-28	NA	Energex scope to be defined
ТВА	Loganlea 110/33kV Transformer Retirement (Powerlink Project)	Dec-26	Jun-26	Energex scope to be defined
\$0.2M	T80 Redbank Plains Primary Plant Replacement (Powerlink Project)	Oct-26	Oct-26	Energex secondary systems work and outage coordination
ТВА	T30 Ashgrove West Secondary Systems Replacement (Powerlink Project)	Dec-29	Jun-27	Energex scope to be defined

5.10.5 Joint planning with other DNSPs

In the past 12 months Energex and Essential Energy has conducted strategic joint planning for the southern Gold Coast and Tweed Shire areas. There were no specific projects identified within the next five years. Energex continues to monitor emerging network limitations beyond the forward planning period on the southern Gold Coast and broader region, and engage with Essential Energy, TransGrid, Powerlink and Terranora Link accordingly.

Energex continues to work closely with Ergon Energy through joint business practices.

5.10.6 Further information on joint planning

Further information on Joint Planning outcomes requiring a RIT-T led by Powerlink is available on the Powerlink website³².

³² Website: https://www.powerlink.com.au/planning-and-consultation

Further information on Energex joint planning and joint network investment can be obtained by submitting email to the following address:

DAPR Enquiries@energex.com.au

5.11 Network planning – assessing system limitations

5.11.1 Overview of methodology to assess limitations

The methodology shown in Figure 13 is used in the preparation of the DAPR to identify and address network limitations, joint planning projects and RIT-D projects.

Following the assessment of emerging network limitations, network and non-network options are considered for addressing the prevailing network limitations. These recommendations then become candidate projects for inclusion in the Energex PoW and are allocated with a risk score based on the Energex network risk-based assessment framework for prioritisation purposes.

The PoW also undergoes ongoing assessment to determine if targeted area demand management activities can defer or remove the need for particular projects or groups of projects. Remaining projects form the organisation's PoW for the next five years. Detailed planning is also done for each PoW project to complete a RIT-D consultation if required, and obtain project approvals for acquisitions, construction, and implementation.

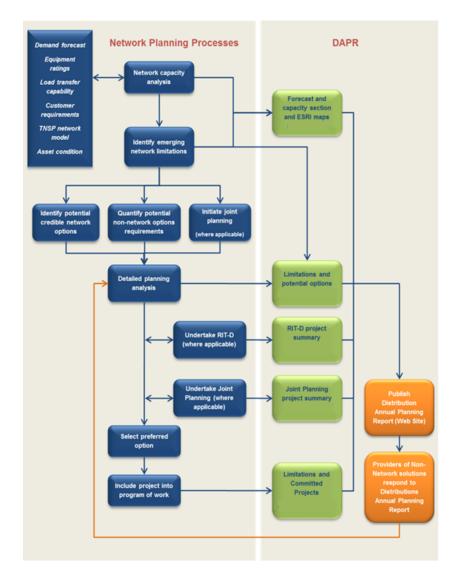


Figure 13: System limitations assessing process

5.11.2 Bulk and zone substation analysis methodology assumptions

Energex uses a software tool to assess emerging capacity limitations for all bulk supply and zone substations, taking into account information such as non-network, manual, remote and automated load transfers, circuit breaker/secondary system ratings, generator support and reference to the current security standards. All reviews are performed annually with comprehensive results included in Appendix D of the DAPR. All assessments are evaluated based on the current network security standards which are detailed in Section 5.4.3: Safety Net. All calculations are based on the latest load forecasts which align with the forecast information provided in Section 4.2.1.

5.11.3 Sub-transmission line analysis methodology assumptions

Based on the forecasting methodology described in Section 4.2.3 using the simulation tool, load flow studies are performed to identify system limitations on the sub-transmission network under system normal or contingency conditions.

Contingency analysis is performed to identify all overloaded lines for all credible contingency events. Contingency transfers are not included in this automated model but are considered in subsequent analysis. The load flow results are then exported to Energex analysis tools and reporting systems.

Energex reviews and analyses these load flow results using additional data not contained in the model itself. This includes information such as non-network alternatives, load transfer capacities (manual, remote and automatic), circuit breaker/secondary system ratings, generator support and reference to the current security standards. The outcome of the analysis would trigger further investigations and identification of potential solutions to address the limitations.

5.11.4 Distribution feeder analysis methodology assumptions

The methodology and assumptions used for calculating the distribution feeder constraints are as follows:

- The previous maximum demands are determined from the historical metering/SCADA data for each feeder. These maximum demands are filtered to remove any temporary switching events.
 Energex temperature corrects these load maximum demands to 50PoE and 10PoE load assessments
- The future forecast demands for each feeder are then calculated based on the historical and current customer growth rate, block loads (major developments) and other localised factors
- The worst utilisation period (summer day, summer night, winter day or winter night) are calculated by dividing the period maximum demand by the period rating. This is the determining period which will trigger a potential exceedance
 - The year and season (i.e., summer or winter) is recorded where the maximum utilisation exceeded either the Target Maximum Utilisation, or three into four (i.e., 75%) nominal distribution feeder security criteria, for urban planning area designated feeders (sufficient interties between feeders), or
 - the 80% criteria for rural planning area designated feeders (sparse or no interties between feeders).

The TMU of each feeder takes into account the ability, of generally, transferring loads from four feeders into three feeders with some use of mobile generation to restore all loads in the event of a fault on the HV network. This is to allow for operational flexibility and load transfers to restore load during a contingency event.

Note: the above-mentioned methodology is only applied at planning level, which triggers further detailed analysis based on a number of factors. Not all breaches of planning criteria will trigger augmentation.

Chapter 6

Overview of network limitations and recommended solutions

- 6.1 Network limitations adequacy, security, and asset condition
- 6.2 11kV primary overcurrent and backup protection reach limits
- 6.3 Summary of emerging network limitations
- 6.4 Regulatory Investment Test for Distribution (RIT-D) projects
- 6.5 Emerging network limitations maps

6 Overview of network limitations and recommended solutions

6.1 Network limitations – adequacy, security, and asset condition

Limitations identified on the transmission-distribution connection points with the TNSPs covering the forward planning period are covered in Section 5.10.4: Joint planning with Powerlink. Limitations affecting either network will be investigated jointly and follow the RIT-T or RIT-D process as required to ensure prudent solutions are adopted.

Table 13 below summarises the identified limitations across the Energex network for the DAPR period.

6.1.1 Bulk and zone substation capacity limitations

For each bulk and zone substation, a separate summary forecast of load, capacity and limitations has been produced for summer and winter. These results are contained in Appendix D: Substation limitations are identified following the processes as described in Section 5.11.2. Table 13 summarises the identified limitations across Energex network for the DAPR period for which projects have been raised.

6.1.2 Sub-transmission and distribution feeder capacity limitations

For each sub-transmission line and distribution feeder, a separate summary forecast of load, capacity and available load transfers for summer and winter has also been produced, and the results are contained in Appendix E. Feeder limitations are identified using the simulation models and processes as described in Section 4.2.2 and Section 5.11.3 The outcome of this analysis would then potentially trigger the creation of new strategic projects.

6.1.3 Network asset retirements and deratings

Energex has a range of project based planned asset retirements which, if not addressed, may result in a system limitation. These retirements are based on the Asset Management Plans outlined in Section 2.4: Asset management overview. These projects can be found in Appendix C.

For assets that are derated, based on condition or other factors, asset ratings are updated in corporate systems and emerging network limitations and associated solution projects are identified as a capacity limitation as per Sections 6.1.1 and 6.1.2 and listed in Appendix C.

6.1.4 Fault level limitations

Energex performs fault level analysis for switchgear at all 132kV, 110kV, 33kV and 11kV buses as well as 33kV and 11kV feeders. Both 3-phase and 1-phase to ground faults are simulated in the studies and the worst case is identified in accordance with IEC 60909 Short-circuit currents in three-phase A.C. systems.

Where fault levels are forecast to exceed the allowable fault level limits, then fault level mitigation projects are initiated. This year's detailed analysis did not identify any additional switchgear fault rating limitations in comparison to the 2024 DAPR.

6.1.5 Embedded generating unit capacity limitations

For each distribution feeder, Energex produces a forecast of the capacity of embedded generating units and a forecast of the minimum demand. Feeder limitations are identified using the simulation models. There are currently no limitations identified on Energex's distribution feeders over the forward planning period as a result of embedded generating unit capacity.

6.2 11kV primary overcurrent and backup protection reach limits

Energex has implemented a program for rectifying backup protection reach limitations at around 100 zone substations across its network. This program is well progressed, with approximately one quarter

of the projects completed and the remaining projects in the concept and detailed design phases. This program will continue over the next two-three years.

6.3 Summary of emerging network limitations

Appendix C provides a summary of proposed committed work in the forward planning period and highlights the upcoming limitations for each bulk supply, zone substation, transmission feeder, subtransmission, and distribution feeders. Potential credible solutions are provided for limitations with no committed works.

Table 13 below summarises the identified limitations across the Energex network for the DAPR period.

Table 13: Summary of substation and feeder limitations

Asset Type		Limitation Type			
		Capacity	Asset Condition	Fault Level	
	Bulk Substation	2	1	0	
	Zone Substation	12	17	0	
Limitations with Proposed Solutions	132kV and 110kV Sub-transmission Feeder	2	0	0	
	33kV Sub- transmission Feeder	26	3	0	
	Distribution Feeder	32	0	0	
Limitations not Addressed	Bulk Substation	4	0	0	
	Zone Substation	21	0	0	
	132kV and 110kV Sub-transmission Feeder	11	0	0	
	33kV Sub- transmission Feeder	27	0	0	
	Distribution Feeder	114	0	0	

6.4 Regulatory Investment Test for Distribution (RIT-D) projects

6.4.1 Regulatory investment test projects – in progress and completed

As per the National Electricity Rules clause 5.17.3 and detailed further in Section 2.2 of the RIT-D Application Guidelines (Version 6, November 2024), a RIT-D proponent is not required to apply the RIT-D for projects where the estimated capital cost of the most expensive potential credible option is less than the RIT-D cost threshold (as varied in accordance with a 'RIT-D cost threshold' determination).

In November 2024 the AER published its final determination on the 2024 cost threshold review for the RIT-D. The revised RIT-D cost threshold is \$7 million from 1 January 2025.

The approved projects shown in Table 14 have been assessed as requiring the application of the RIT-D. All relevant RIT-D documents (for example, Options Screening Report, Draft Project Assessment

Report (DPAR) and Final Project Assessment Report (FPAR)) are published on the Energex <u>website</u>³³ under 'current consultations' or 'closed consultations'. The information required at Schedule 5.8(e) of the NER can be viewed by accessing the corresponding documents for each project listed in Table 14.

Table 14: In Progress RIT-D projects

Project Name	RIT-D Forecast/Actual Completion*
Reliability Corrective Action in the Chermside network area	Concluded Feb 2025
Reliability Corrective Action in the Acacia Ridge network area	Concluded Oct 2025
Reliability Corrective Action in the Jimboomba – North Maclean network area	FPAR to be published in December 2025
Reliability Corrective Action in the Raceview network area	DPAR to be published in December 2025

^{*} Dates correct as of November 2025.

6.4.2 Foreseeable RIT-D projects

The forward Energex PoW includes projects identified as requiring the application of the RIT-D. A summary list of such projects that have been identified to address emerging network limitations in the forward planning period is shown in Table 15.

Table 15: Foreseeable RIT-D projects to address long term constraints (>\$7M)

Project Name	RIT-D Commencement*
Reliability Corrective Action in the West End network area	Q1 2026
Reliability Corrective Action in the Makerston Street network area	Q1 2026
Reliability Corrective Action in the Coomera and Pimpama network area	Q1 2026
Reliability Corrective Action in the Victoria Park network area	Q2 2026
Reliability Corrective Action in the Toorbul Point network area	Q3 2026

^{*} Dates correct as of November 2025.

6.4.3 Urgent or unforeseen projects

During the 2024-25 year, there have been no urgent or unforeseen investments by Energex that would trigger the RIT-D exclusion conditions for the application of regulatory investment testing.

6.5 Emerging network limitations maps

This section covers the requirements outlined in the NER under Schedule 5.8 (n), which includes providing maps of the distribution network, and maps of forecasted emerging network limitations. The extent of information shown on these maps, using graphical formats, has been prepared to balance adequate viewing resolution against the number or incidences of maps that must be reported. In addition to system-wide maps, limiting network maps are broken up into groupings by voltage level. For confidentiality purposes, where third party connections are directly involved, the connecting network is not shown.

³³ Website: https://www.energex.com.au/our-services/projects-and-maintenance/rit-d-projects

Overview of network limitations and recommended solutions

This information is provided to assist parties to identify elements of the network using geographical representation. Importantly, this does not show how the network is operated electrically. More importantly, this information should not be used beyond its intended purpose.

Following feedback from customers, interactive maps are now available on the Energex website via the following link: interactive maps 2025³⁴.

The maps provide an overview of the Energex distribution network, including:

- Existing 132kV, 110kV and 33kV feeders
- Existing bulk supply and zone substations
- Future bulk supply and zone substations approved in the five year forward planning period
- Existing 132kV, 110kV and 33kV feeders with identified Safety Net limitations within the five year forward planning period
- Existing bulk supply and zone substations with identified Safety Net limitations within the five year forward planning period.

Energex is anticipating that the AER will revise RIT-D thresholds in 2027.

-

Website: https://www.energex.com.au/about-us/company-reports,-plans-and-charters/distribution-annual-planning-report/maps/seq/dapr-map-2025

Chapter 7

Demand management activities

- 7.1 Demand management explained
- 7.2 Integration of demand management into the planning process
- 7.3 Energex's industry engagement document
- 7.4 2024-25 Deliverables of the Energex demand management program
- 7.5 Energex demand management program delivery over the next year

7 Demand management activities

Demand Management (DM) is part of our suite of solutions for network management which may be used instead of, or in conjunction with, investments in network infrastructure to ensure an optimised investment outcome.

7.1 Demand management explained

In the context of electricity networks, DM is the act of modifying demand and/or electricity consumption, for the purpose of reducing or delaying network expenditure (i.e., removing or delaying an underlying network constraint). This definition recognises that DM need not be specific to removing networks constraints only at times of maximum peak demand. It can also provide solutions in response to the retirement or replacement of an aging asset; redundancy support during equipment failure; minimum demand and associated issues with voltage, system frequency and power quality management; managing diverse power flows and system security issues. With rapidly growing CER in the network, DM must evolve to enable flexible energy use to optimise end-to-end investment.

DM can also be particularly valuable when there is uncertainty in demand growth forecasts, as DM does not lock in long-term irreversible investment. In these situations, DM can provide considerable 'option value' and flexibility.

Some DM solutions are also known as non-network solutions as they provide an alternative to network-based solutions. This involves working with our customers and DM providers to modify demand and/or energy consumption to reduce operational costs or be an alternative to capital expenditure. The more capital expenditure that can be deferred or avoided, the greater the savings to our customers.

DM must be deployed to match the temporal (i.e. frequency and duration) and spatial (i.e. what level of the network and how many customers are affected) nature of the network constraint. As more CER is connected to our network, the temporal and spatial nature of network constraints will change. As such, our DM capability will need to adapt to suit these new and emerging network constraints.

7.2 Integration of demand management into the planning process

The network planning process, as outlined in Chapter 5: Network planning framework and the following sections, include the identification of network constraints and the assessment of DM solutions. When a network constraint is identified, a screen of non-network options is completed to determine if DM solutions offer credible options. Where a screening test finds that a non-network option may provide an efficient alternative solution (by partially or fully addressing the constraint), market engagement and investigation of possible DM solutions is initiated.

'In market' engagement activity depends upon forecast expenditure, size, and timing of the constraint. Where total capital expenditure of the most expensive credible option is greater than \$7 million, a RIT-D is required to be undertaken (refer to Figure 14). For the list of projects that required a RIT-D assessment over the last year refer to Section 6.4 and RIT-D consultation information available on the Energex website³⁵.

Where the forecast capital expenditure for the most expensive credible option is less than \$7 million, opportunities for credible non-network solutions are developed by gauging interest and ability of service providers and customers to participate (refer Figure 15). Depending on the specific requirement of the limitation, we may publish details online (using maps) or invite proponents to respond to a Request for Proposal (RFP). We may further directly engage with customers on DM opportunities for specific events or locations as required.

7!

³⁵ Website: https://www.energex.com.au/our-services/projects-and-maintenance/rit-d-projects

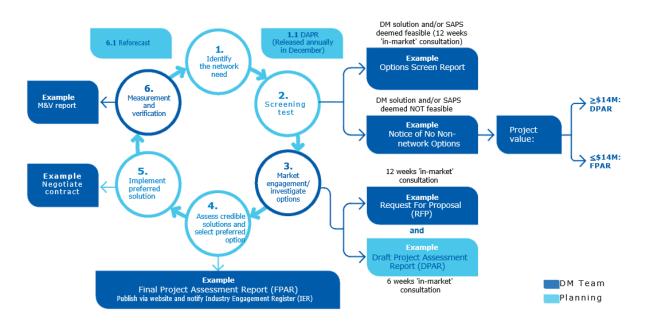
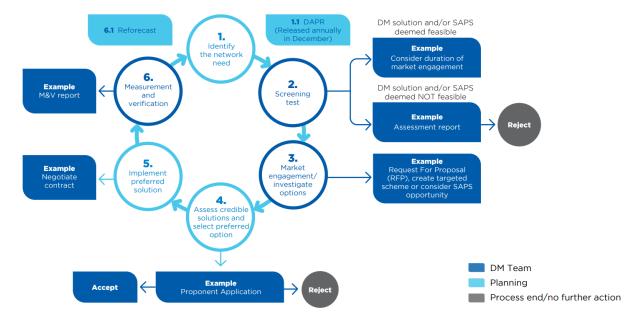



Figure 14: Network planning assessment - RIT-D process

As part of our commitment to customer affordability, we also publish forecast feeder constraints likely to occur during peak summer demand periods and advertise the opportunity for market participants to provide lower cost alternatives to network augmentation. We continue to review and improve the process in how we advertise and seek these alternatives. Our website continues to be expanded to include additional feeder constraints, as well as historical and forecast constraints. We publish fact sheets on how to participate to enable a wider range of customers to provide services, including aggregators/ Virtual Power Plants (VPPs) and large commercial customers. Content is published via our website³⁶ including downloadable datasets.

³⁶ Website: https://www.energex.com.au/manage-your-energy/cashback-rewards-program/request-forproposals-and-eoi

Demand management activities

Where a non-network solution is selected, a contract in some cases called a Network Support Agreement (NSA) is established with the customer to provide permanent (energy efficiency) or point in time (when required) demand response. Measurement and verification are undertaken to determine the response achieved. The verified change in demand becomes an input into the forecast and the planning process

7.3 Energex's industry engagement document

The Industry Engagement Document communicates how Energex engages with customers and DM providers with respect to the supply of credible demand side, and non-network solutions to address system constraints and lower costs for customers in the network distribution areas. The Industry Engagement Document retains our commitment to:

- Improve industry engagement and the screening of DM solutions in the distribution planning process
- Improve the ways we identify network limitations and provide details about them to customers and DM providers, using consistent, clear terminology
- Identify, investigate, and implement commercially sound DM solutions while engaging with customers, stakeholders, and DM providers, as per our approach outlined in the Energex Demand Management Plan
- Provide adequate time, support, and mechanisms for stakeholders to engage, respond and participate in DM solutions
- Deliver on DM solutions that prevent, reduce, or delay the need for network investment.

A copy of the Industry Engagement Document can be found on our website³⁷.

7.4 2024-25 Deliverables of the Energex Demand Management program

Five key initiatives were delivered by the DM Program for our regulated network in 2024-25:

- Broad based
- Targeted
- Customer Enablement
- Network Battery Support Agreements
- DM Innovation.

7.4.1 Broad based demand management

This initiative is available to residential and small business customers across the whole network. It enables DM across the whole network, rather than just in a local area with a network constraint. Broad Based DM includes direct management of connected appliances for day-to-day network load levelling as well as during periods of extreme demand or emergency response.

An example of the broad-based program in action is through scheduled management of hot water loads. The scheduling is modified throughout the year such that in summer, demand is shifted from the residential evening peak minimising local peak demand constraints, whereas in spring and autumn, the focus is on shifting demand to daytime improving solar PV hosting capacity. The same schedules can also be operated in events that affect overall system security matters such as Lack of Reserve or Minimum System Load conditions.

Another example is the use of incentives provided to customers who enrol their PeakSmart air conditioners into the program. Incentives are also given to industry partners who install PeakSmart

³⁷ Website: https://www.ergon.com.au/ data/assets/pdf file/0020/1005725/Industry-Engagement-Document.pdf

Demand management activities

enabled air conditioners. This incentive program supports a broad-based demand management capability that can be called upon in very high temperature dependent network events. For more information on PeakSmart, visit our website³⁸.

7.4.2 Targeted demand management

This initiative is available to customers and DM providers who can deliver DM solutions in specific areas of the network identified as having future or emerging network constraints. Refer Section 6.3: Summary of emerging network limitations and Appendix C. Target areas distribution feeders are those areas of network constraint where a project has been identified as a potential solution. Those distribution feeders which are identified as at-risk, but with a forecast utilisation exceeding 75% over the upcoming three years have been identified as marginally at-risk (MAR).

Market engagement is undertaken to seek DM solutions from customers and DM providers. Incentives are offered to customers or DM providers to deliver DM solutions. In recognition of the range of emerging solutions, including MAR feeder level constraints provides greater NSA opportunities from a more diverse market.

In 2024-25, 'in market' engagement for DM solutions continued via numerous Regulatory Investment Test consultations and Distribution Feeder Target Areas across the region. Verified customer and service provider DM solutions in these areas, which met technical, time and cost requirements were incentivised to deliver demand reductions. In addition, Energex had one closed consultation for the 2024-25 year and continues to manage Network Support Agreement to provide non-network solutions. Early market engagements were released seeking RFP for 17 target area distribution feeder limitations and 112 MAR distribution feeders.

7.4.3 Customer enablement

Our Customer Enablement Program will ensure that customers remain at the heart of the energy transition and our future plans. Our commitment to focussing on Customer Enablement will help enhance customer trust and confidence in our approach to demand flexibility, maximise customer behind the meter investments and realise mutual value through more cost-effective network investments.

- Increased attendance at Industry and Trade events with booths and presentations to promote demand and energy management messages and solutions
- Release of the EV Charging Guide on the network webpages, and promotion to key channels
 to market, providing customers with the most suitable charging options for their needs that are
 also supportive of the network
- Completed our contribution to the award-winning Carseldine village "net zero emissions" residential development. With highly efficient construction and the installation of energy efficient appliances, solar rooftop generation and battery storage, the program was a showcase for the rest of the residential building industry. It showed that building homes of this type added minimal additional cost but significant ongoing saving for customers. It has shown the value of solar and batteries (managed or not) for both customers and the network
- Development of Customer Stories strategy and creation of the first two Customer Stories.
 Customer Stories are intended to show how real customers are managing their energy use in
 smart and innovative ways. These stories can be about saving money on bills, being more
 sustainable or just being more efficient. They are available for all Queensland customers and
 seek to inspire and give confidence to others to act for themselves too.

_

³⁸ Website: https://www.energex.com.au/manage-your-energy/cashback-rewards-program/peaksmart-air-conditioning-rewards

7.4.4 Network battery support agreement

This business wide initiative involves the installation of network connected batteries across Queensland, particularly in areas with high solar penetration. The batteries are used to store excess energy generated by rooftop solar systems during the day, helping to manage minimum demand issues on our network.

The Demand Management function is to manage the market engagement and commercial arrangements with the sourcing and operation of our fleet of batteries to optimise network support and ensure appropriate value back to the network for their operation. The batteries will be a mix of large-scale network connected batteries and local batteries.

7.4.5 Demand management innovation

The initiative trials innovative demand flexibility capabilities and technologies that reduce long term network costs. A suite of innovative trials and projects to test and validate DM products and processes are funded via the Demand Management Innovation Allowance Mechanism (DMIAM). These trials and projects are often started in response to emerging network challenges and opportunities (refer to Chapter 11: Network challenges and opportunities).

A <u>DMIAM annual report</u>³⁹ is developed each year that summarises current and completed projects. This report is only published on the Energex website in consideration of updates by the Australian Energy Regulator.

7.5 Energex demand management program delivery over the next year

Annually, Energex publishes a Demand Management Plan which includes our strategy for the next five years. Our strategy seeks to support the development and delivery of demand flexibility solutions which influence and shape how demand presents to the network, with the aim of reducing network expenditure.

The increasing penetration of CER and ongoing electrification of energy has had a significant impact on the shape of the network load profile. Unmanaged, this will drive increased network peak demand, falling network minimum demand and reduced network utilisation. Demand flexibility assists in managing the rapidly accelerating daily ramp rate between the daytime minimum demand and early evening peak demand.

This plan explains our approach for delivering the Demand Flexibility Program for Queensland and represents the initiatives and activities for the next financial year including the promotion of non-network solutions. A copy of our <u>Demand Management Plan 2025-26</u>⁴⁰ is available online.

While striving to meet our long-term strategy, our DM portfolio will continue to evolve in response to system and local network needs. Our key focus areas of action for 2025-26 will be the development of an Aggregated Demand Response Program (ADRP). The ADRP will operate in partnership with retailers and aggregators to optimise the total value of flexible demand for the connected customer and in the longer term it will work in harmony with enabling platforms such as the Distributed Energy Resource Management System (DERMS) platform and our dynamic connections framework. The ADRP will enable Queensland networks to procure flexible demand in both peak and minimum demand scenarios.

The ADRP can be delivered via multiple market participants, through mixed types of CER devices (regardless of ownership) and therefore unlock greater behind the meter flexibility opportunities for

79

³⁹ Website: https://www.energex.com.au/manage-your-energy/managing-electricity-demand/demand-management-innovation-allowance-mechanism

⁴⁰ Website: https://www.energex.com.au/ data/assets/pdf_file/0019/1085005/Demand-Management-Plan-2025-26.pdf

Demand management activities

customers to access flexibility rewards and incentives via their aggregator. It supports existing loads, offsets lost load from existing programs and manages new load growth on the network.

In the forward planning period, those areas for which we will be seeking non-network solutions will be published via our Regulatory Investment Test pages⁴¹ on our website.

80

⁴¹ Website: https://www.energex.com.au/our-services/projects-and-maintenance/rit-d-projects

Chapter 8

Asset life-cycle management

- 8.1 Approach
- 8.2 Asset maintenance strategy overview
- 8.3 Asset replacement strategy overview
- 8.4 Other programs
- 8.5 Derating

8 Asset life-cycle management

8.1 Approach

Energex has a legislated duty to ensure all staff, the Queensland community and its customers are electrically safe. This duty extends to eliminating safety risks based on the "so far as is reasonably practicable" principle. If elimination of a safety risk is not practical, our responsibility is to mitigate risks based on the same principle.

Energex's approach to asset life-cycle management, recently certified in 2025 as compliant with ISO 55001 Asset Management Systems following a comprehensive audit, includes asset inspection, maintenance, refurbishment, renewal and integrates several key objectives, including:

- Achieving its legislated safety duty
- Delivering customer services and network performances to meet the required standards
- Adhering to a prudent and sustainable network investment
- Ensuring asset safety compliance while maintaining prudent operational efficiency and financial sustainability.

Policies are used to provide corporate direction and guidance, and plans are prepared to provide a safe, reliable distribution network that delivers a quality of supply to customers consistent with legislative compliance requirements and optimum asset life. These policies and plans cover equipment installed in substations, the various components of overhead powerlines, underground cables, and other distribution equipment.

The policies and plans define inspection and maintenance requirements, and refurbishment and renewal strategies for each type of network asset. Asset life optimisation considers maintenance and replacement costs, equipment degradation and failure modes along with safety, customer, environmental, operational, and economic consequences.

All assets have the potential to fail in service. Energex's approach to managing the risk of asset failures is consistent with regulatory requirements including the *Electrical Safety Act 2002* (Qld), Electrical Safety Regulation 2013 and the Electricity Safety Code of Practice 2020 – Works and good asset management practice. We distinguish between the expenditures for:

- Inspection and preventative maintenance works, where each asset is periodically assessed for condition, and essential maintenance is performed to ensure each asset continues to perform its intended function and service throughout its expected life
- Proactive refurbishment and replacement, where the objective is to renew assets just before they fail in service by predicting assets' end-of-life based on condition and risk, plus
- Run-to-failure refurbishment and replacement, which includes replacing assets that have failed in service.

A proactive approach is undertaken typically for high-cost, discrete assets, such as substation plant, where Energex records plant information history and condition data. This information is used to adjust maintenance plans and schedules, initiate life extension works if possible, and predict the remaining economic life of each asset. Proactive replacement or refurbishment is then scheduled as near to the predicted end of economic life as practical. This approach is considered the most prudent and efficient approach to achieve all required safety, quality, reliability, and environmental performance outcomes, having regard for the whole-of-life equipment cost. The consequence of failure impacts the priority for replacement of the asset in the overall works program.

For assets, where it is not economic to collect and analyse trends in condition data, assets are operated

Asset life-cycle management

to minimise in-service failures through inspection and priority risk-based intervention. These assets are managed through an inspection regime, which is also required under legislation. The objective of this regime is to identify and replace assets that are very likely to fail before their next scheduled inspection. In addition, asset class collective failure performance is assessed and analysed regularly, with adverse trends and increasing risk issues becoming drivers for targeted maintenance, refurbishment, or replacement programs.

Actual asset failures are addressed by a number of approaches depending on the nature of the equipment, identified failure modes, and assessed risk. The approaches include repair, refurbishment, or replacement.

All inspection, maintenance, refurbishment, and renewal work programs are monitored, individually and collectively, to ensure the intended works are performed in a timely, safe, and cost-effective fashion. These outcomes feed back into asset strategies to support prudent and targeted continuous improvement in life cycle performance overall.

8.2 Asset maintenance strategy overview

Energex manages safety and service compliance requirements via various preventative inspection and minor maintenance programs. These are collectively described below.

8.2.1 Asset inspections and condition based maintenance

Energex generally employs condition and risk-based asset inspection, maintenance, refurbishment, and replacement strategies in line with its asset management policies and strategies. End-of-economic-life replacement and life-extension refurbishment decisions are informed by risk assessments considering safety, history, performance, cost, and other business delivery factors.

All equipment is inspected at scheduled intervals to detect physical indications of degradation exceeding thresholds that are predictive of a near-future failure. Typical examples of inspection and condition monitoring activities include:

- Dissolved Gas Analysis (DGA) of oil to monitor for trace gases produced by internal faults for power transformers
- Inspection of customer service lines
- Assessing the extent of decay in wood power poles to determine residual strength
- Inspection of timber cross-arms to detect visible signs of degradation
- Inspection of cable pits
- Electrical testing of circuit breakers.

In particular, Energex has a well-established asset inspection program to meet regulatory requirements. All assets are inspected in rolling period inspection programs.

Remedial actions identified during inspections are managed using a risk assessed priority code approach. Pole assets, for example, employ a Priority 1 (P1) coding which requires rectification within thirty (30) days and Priority 2 (P2) unserviceable poles require rectification within six months. This ensures the required actions are completed within the recommended regulatory standards.

Consistent with the principles of ISO 55000 Asset Management, Energex is building its capability with an ongoing investment into technologies that deliver improvement in risk outcomes and efficiency. These efforts include utilising Light Detection and Ranging (LiDAR) data from the aerial asset, drones, and vegetation monitoring management technology. This aircraft-based laser and imaging capture system provides spatial mapping of the entire overhead line network.

The data captured is processed to enable identification and measurement of the network and surrounding objects such as buildings, terrain, and vegetation. The system creates a virtual version of the real world to allow the fast and accurate inspection and assessment of the physical network and the surrounding environment, particularly vegetation.

The integration of this information into our decision framework and works planning processes is increasingly delivering productivity and efficiency improvements, not only with vegetation management but with other network analytics such as clearance to ground analysis, clearance to structure analysis, pole movement and leaning poles analysis with other innovative identification systems being developed.

8.3 Asset replacement strategy overview

The processes for inspection and routine maintenance of Energex assets are well established and constantly reviewed. Energex uses its asset management system to record and analyse asset condition data collected as a part of these programs. Formal risk assessments are conducted for all asset classes, identifying failure modes and consequences, as well as suitable mitigation measures. The results of these programs are regularly monitored, with inspection, maintenance, refurbishment, and renewal strategies evolving accordingly. These strategies in turn are used to inform forecast expenditure.

Energex employs Condition Based Risk Management (CBRM) modelling and Common Network Asset Indices Methodology for assets where the effort required to develop, maintain, and collect the information required to support the models is justified. This methodology combines current asset condition information, engineering knowledge and practical experience to predict future asset condition, performance, and residual life of assets. The CBRM system supports targeted and prioritised replacement strategies. This technique is currently used for substation power transformers, circuit breakers and instrument transformers as well as underground cables of 33kV and above.

The outputs from CBRM, Health Indices, are used in conjunction with an engineering assessment to form the basis of the application of the risk-based methodology.

Within the framework of the Network Planning Process, an assessment is conducted for the limitations associated with each CBRM assets. Subsequently, individual projects are initiated, and an assessment undertaken to determine the optimal timing for their replacement. This procedure involves performing NPV analysis, risk assessment, and consolidating activities with other network assets in suboptimal condition at a designated timing. Energex ensures prudency and efficiency, ultimately curbing the financial impact on our customers and the broader community.

Figure 16 provides a summary of the process for delivering network asset investment planning condition-based risk management.

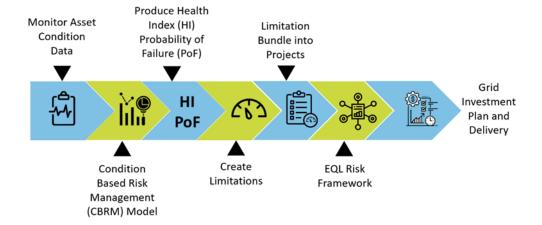


Figure 16: Process to create asset investment plan

Asset life-cycle management

Projects are undertaken where limitations are identified that are specific to a substation or feeder. Limitations of this nature are considered in conjunction with other network limitations including augmentation and connections to identify opportunities to optimise the scope of the project to address multiple issues and minimise cost. Project planning is undertaken in accordance with the RIT-D. Assets without an ongoing need are retired at economic end of life and are not considered for replacement.

Programs of replacement are undertaken when the scope of works to address the identified limitations is recurring across multiple locations and does not require consideration under the Regulatory Investment Test for Distribution.

The following sections provide a summary of the replacement methodologies for the various asset classes in the Energex network.

8.3.1 Line Assets and distribution equipment

8.3.1.1 Pole and tower refurbishment and replacement

Poles and towers are inspected periodically as required by Queensland legislation. Poles require very little maintenance except for removal of vegetation and termite and bacteria barrier treatments, normally carried out during the inspection process. A majority of pole replacement is driven by well-established inspection programs used to identify severe structural strength degradation. Structural strength is determined in accordance with AS 7000.

A small volume of poles are also replaced when undertaking reconductoring programs as an efficient means of work delivery. Poles replaced under reconductoring programs will be either identified as approaching end of life based on asset criteria or as a result of mechanical design requirements to support the new conductor.

Targeted pole replacement programs make up the remainder of the forecast. This program is estimated, based on a combination of criteria that identify assets approaching end of life and that present a high risk in the event of in-service failure. The criteria used are a combination of pole type, age, location, previous strength assessment and/or the period the pole has been nailed. Risk is largely determined by the location, with priority being given to replacement in high risk areas such as the vicinity of schools and public amenities.

Pole nailing is a mid-life refurbishment life extension technique intended to restore ground line structural strength lost due to below-ground bacterial degradation and is applied based upon inspection outcomes. To date, pole nailing is expected to achieve an average of 15 years additional asset life. Historical nailing volumes have been used to forecast future nailing volumes.

8.3.1.2 Pole top structure replacement

Most of the crossarm replacement is driven by well-established inspection programs to identify severe structural strength degradation. They are actively managed through a condition-based approach including:

- Visual inspection of physical condition from ground level
- Aerial visual inspection carried out from helicopters/aircrafts/drones
- Pole top structures inspection carried out from elevated work platform or climbing.

Physically defective crossarms identified through inspection are replaced. Failed assets are also replaced on failure. They may also be replaced based on risk, where criteria indicating assets are either at or near end of life can be identified. Targeted replacement is typically undertaken with other work such as feeder refurbishment programs or bundled into logical groups for efficiency of delivery and cost. High risk aging populations of pole top structures, specifically crossarms, are replaced through targeted replacement programs.

8.3.1.3 Overhead conductor replacement

Overhead conductor condition is difficult to assess in-situ as current visual inspection methods can only identify surface defects. Conductor age, type, construction, environment, and in-service performance history are used as proxies for condition. Energex employs a data driven refurbishment software tool to identify overhead conductor operating at beyond its expected technical life based on the replacement criteria documented in the Asset Management Plan—Overhead Conductors. At-risk conductor is then

field assessed by subject matter experts during project scoping to validate the corporate data and assess the asset in service. The number of splices/joints identified in each span is used as an indicator of in-service condition.

The 3/12G galvanised steel (SC/GZ) and small diameter Hard Drawn Bare Copper (HDBC) conductors have been identified and confirmed as prone to failure due to corrosion and mechanical fatigue caused by reduced stranding and cross-sectional area. These populations contribute significantly to the inservice failures and defects observed on the Energex network. Refer to the Asset Management Plan for a comprehensive breakdown of the installed population, current levels of service and current and emerging technical issues.

Due to the geographically dispersed nature of the network, populations of conductor are subject to different operating environments and failure modes. Targeted programs are therefore aimed at known problematic conductor types and initially focused on those installed in populated, coastal regions where the likelihood of in-service asset failure is considered greater. Remaining aged populations are managed through routine inspection programs with ongoing monitoring of conductor failure rates and performance metrics.

The prioritised scope of HV and LV distribution overhead conductor reconductoring is:

- All hard drawn bare copper 7/0.104" imperial and smaller aged 70+ years
- All galvanised steel 3/12 imperial conductor aged 55+ years
- Small diameter Aluminium Conductor Steel Reinforced (ACSR) imperial conductor aged 70+ years.

Additionally, this approach has identified at risk 33kV conductor operating at or beyond its technical life based on condition, which presents a significant safety risk to electricity workers and the general public.

8.3.1.4 Underground cable replacement

Energex employs CBRM to forecast the retirement of underground cables greater than or equal to 33kV. Asset condition and failure consequence risks (safety, customer reliability, environmental and business) are regularly assessed for each cable within this population. This begins with a "Health Index" (HI) developed to represent asset condition. A higher HI value represents a more degraded asset, with corresponding higher likelihood of failure. In turn, this reflects as a higher likelihood of inability to achieve the basic customer energy delivery service. Energex considers assets for replacement when HI reaches 7.5. The Energex risk framework is applied to prioritise asset replacement at a program level within financial and resource constraints.

In general, distribution and LV cables are replaced upon identified defect or ultimate failure.

Underground cable assets are inspected periodically, as required by Queensland legislation. At transmission and sub-transmission voltages, routine maintenance monitors the electrical condition of the cable over sheaths and sheath voltage limiters, the performance of pressure feeds, the accuracy and condition of pressure gauges and alarm systems and the physical condition of the above ground structures and terminations.

Asset life-cycle management

At distribution voltages, periodic inspections check the external condition of distribution cable systems including link pillars, link boxes and service pillars to ensure equipment remains in an acceptable condition.

Energex has initiated the following proactive, targeted programs aimed at known problematic underground distribution assets:

Legacy underground LV cable replacement

Concentric Neutral Solid Aluminium Conductor (CONSAC) is a legacy aluminium sheathed paper insulated LV cable installed on the network during the 1970's. The aluminium sheath also serves as the neutral conductor in this cable construction. The aluminium sheath is susceptible to corrosion which can lead to open circuit of the neutral and therefore can pose a significant safety risk.

Corrosion of Cast Iron Cable Potheads

Cast iron potheads are an obsolete legacy cable termination used to transition from the underground to overhead system. Each core of a multicore cable is terminated through porcelain bushings contained in a cast iron box. A dielectric material, such as hydrocarbon oil or asphalt, is used to fill the box. Corrosion of the outer casing leads to water ingress and potential catastrophic failure of the termination. Due to data quality issues, small populations of these terminations exist and are to be replaced upon discovery.

Cable Pit Inspections

Cable pits are underground access chambers used during underground cable installation, housing cable joints, and splitting/routing cables. These concrete cable pits are subject to environmental conditions that corrode cable supports and concrete steel reinforcement. Cable joints are also subject to water ingress and heat/overloading deterioration, which may result in an overpressure of the chamber causing the pit lid to dislodge.

8.3.1.5 Customer service line replacement

Service replacement programs include works as part of an ongoing strategy to ensure compliance with regulations relating to the condition assessment of customer services. Compromised or broken neutral connections can lead to a dangerous rise in potential on the installations earthing system and metallic parts, which can compromise a person's safety. Public shocks are required to be reported to the Electrical Safety Office (ESO) and are monitored against corporate performance targets. This asset class is narrowly performing at an acceptable level against these metrics due to ongoing proactive replacement programs. Energex has also initiated online monitoring of service integrity using in house LV safety monitors and access to smart meter data where applicable. Table 16 lists the number of Neutral Failures over the previous four years.

Table 16: Number of Energex neutral failures by financial years

Type of Fault	2021-22	2022-23	2023-24	2024-2025
Neutral Faults	128	121	138	122

8.3.1.6 Distribution transformer replacement

Distribution transformers are inspected periodically as required by Queensland legislation. Distribution transformers require very little maintenance except for removal of vegetation and animal detritus. They are reactively replaced, due to either electrical failure or poor condition as assessed by ground based inspection. It is generally considered uneconomical to refurbish older distribution transformers and they are routinely scrapped once removed. However, transformers that are younger and in good condition will be considered for refurbishment. Replacements are generally undertaken with modern equivalent units.

8.3.1.7 Distribution switches including Ring Main Units (RMU) replacement

Distribution switches are inspected periodically as required by Queensland legislation. All assets require basic cleaning maintenance such as removal of vegetation and animal detritus. HV switches require some mechanical maintenance, mostly related to moving parts. Oil filled Ring Main Units (RMUs) require some maintenance related to cleaning of oil sludge. SF6 gas filled switches and RMUs require minimal maintenance.

LV and HV switches, fuse assets and RMUs are replaced reactively, either on electrical failure or on poor condition as assessed by ground based inspection. Problematic asset types are proactively replaced by targeted programs.

Some refurbishment of components outside of sealed gas chambers is undertaken where economical to do so for in-service assets. It is generally considered uneconomical to refurbish LV and HV switches, fuse carriers and RMUs once removed, and they are routinely scrapped. Replacements are generally undertaken with a modern equivalent unit.

8.3.2 Substation primary plant

8.3.2.1 Power transformer replacement and refurbishment

Asset condition and failure consequence risks (safety, customer reliability, environmental and business) are regularly assessed for each individual transformer. This begins with a HI developed to represent asset condition. A higher HI value represents a more degraded asset, with corresponding higher likelihood of failure. In turn, this reflects as a higher likelihood or inability to achieve the basic customer energy delivery service. Energex considers assets for replacement when HI reaches 7.5. The Asset Management Plan documents the basis of the condition analysis and derivation of the Health Index. Energex employs CBRM modelling to identify the poorest condition assets. The oldest substation transformers in the population that have exceeded their technical life are also considered as potential candidates for replacement to avoid an unsustainable build-up of exceptionally aged assets.

Replacement of potential candidate assets is subsequently considered based on network requirements and in alignment with other network drivers such as augmentation and customer requested works to ensure the final option to address the identified limitation is the most cost effective from a whole-of-network perspective. The Energex risk framework is applied to prioritise asset replacement at a program level within financial and resource constraints.

8.3.2.2 Circuit breaker, recloser and switchboard replacement and refurbishment

Substation circuit breaker condition, and failure consequence risks (safety, customer reliability, environmental and business) are regularly assessed for each individual substation asset. This begins with a HI developed to represent asset condition. A higher HI value represents a more degraded asset, with corresponding higher likelihood of failure. In turn, this reflects as a higher likelihood of inability to achieve the basic customer energy delivery service. Energex considers assets as potential candidates for replacement when HI reaches 7.5. The Asset Management Plan for Circuit Breakers and Reclosers documents the basis of the condition analysis and derivation of the HI, using CBRM modelling to identify the poorest condition assets. The Energex risk framework is applied to prioritise asset replacement at a program level within financial and resource constraints.

Reclosers are a low-cost item of plant used on lines in the distribution network where they are generally replaced on failure. Reclosers are also used in smaller substations as a low-cost circuit breaker alternative where they are managed similarly to circuit breakers.

Line reclosers are visually inspected periodically, as required by Queensland legislation. No other condition assessment is employed. Once physical indicators (e.g., severe corrosion, excessive oil leakage or loss of gas) develop that establish the recloser is at physical end of life, it is replaced.

Asset life-cycle management

Many line reclosers fail in service. Because of the volumes and labour costs involved, it has proven to be uneconomical to refurbish retired reclosers and they are routinely scrapped. Replacements are generally undertaken with a modern equivalent unit.

Modern reclosers require very little maintenance except for periodic battery replacement and removal of vegetation and animal detritus.

8.3.2.3 Instrument transformer replacement and refurbishment

Instrument transformer's condition and failure consequence risks (safety, customer reliability, environmental and business) are regularly assessed for each individual substation asset. A more degraded asset has a corresponding higher likelihood of failure.

This has adverse implications on network protection as well as staff and public safety. In turn, this reflects as a higher likelihood of inability to achieve the basic customer service delivery and a safe network for the Queensland community. Energex considers assets for replacement based on assessed end of technical life, condition, and risk.

The Energex risk framework is applied to prioritise asset replacement at a program level within financial and resource constraints. Where practical, timing of replacement is coordinated with other necessary works occurring in the substation to promote works efficiencies.

8.3.3 Substation secondary systems

8.3.3.1 Protection relay replacement program

Protection relays are condition monitored and older models require regular maintenance. Protection relays react to power system faults and automatically initiate supply de-energisation. Failure consequences are predominantly damage to plant and safety impacts, including loss of ability to respond to power system faults and heightened safety risks due to continued energisation of failed assets. Duplication and redundancy are typically employed to reduce these safety risks, although some older sites retain designs where backup protection does not completely compensate for initial protection asset failure. Due to the potential consequences of relay failure, Energex has adopted a proactive replacement program targeting problematic and near end-of-life relays.

Wherever possible, replacement of obsolete protection schemes is undertaken with other capital work such as primary plant replacement or augmentation for efficiency reasons. In circumstances where this is not possible, standalone projects for replacement of the obsolete protection schemes are undertaken.

8.3.3.2 Substation DC supply systems

The outcome of a battery failure inside a substation can lead to high safety consequence such as serious injury to Energex personnel and reliability risk consequences such as complete loss of control and protection at a substation. Maintaining the operational reliability of substation DC services is paramount.

Batteries are inspected and tested annually. As the batteries degrade with use and time, component elements are replaced upon failure, while complete battery banks and chargers are replaced on age.

8.4 Other programs

8.4.1 Vegetation management

Vegetation encroaching within minimum clearances of overhead powerlines presents safety risks for the public, Energex employees and contract workers. Vegetation in the proximity of overhead powerlines is also a major cause of network outages during storms and high winds.

Asset life-cycle management

Energex maintains a comprehensive vegetation management program to minimise the community and field staff safety risk and provide the required network reliability. To manage this risk, we employ the following strategies:

- Cyclic programs, to treat vegetation on all overhead line routes. The cycle times are managed based on species, growth rates and local conditions; as well as
- Reactive spot activities to address localised instances where vegetation is found to be within clearance requirements and is unable to be kept clear until the next cycle - or has been reported for action by customers.

Energex works cooperatively with local councils to reduce risk of vegetation contacting powerlines.

8.4.2 Overhead network clearance

Energex has an obligation to meet the minimum clearance standards specified under the *Electrical Safety Act (2002) (Qld)* and associated regulations. The Fugro ROAMESTM LiDAR technology was deployed in 2016-17 and has allowed individual identification of conductor span clearance to ground and structure issues for all conductor types except service lines.

The most recent LiDAR overhead network clearance survey commenced in August 2020 on a three-year cycle. Energex has adopted an improved clearance defect identification by using a combined physical LiDAR process and algorithm to identify clearance defects at a corrected ambient temperature of 35°C. The LiDAR overhead network clearance survey was completed, and all survey results published by January 2022. Work has commenced on the rectification in accordance with the priority matrix which is risk based and follows the "so far as is reasonably practicable" principle with priority given to high risk areas such as schools & agricultural areas and the level of accessibility of clearance to structure defects.

8.5 Derating

In some circumstances, asset condition can be managed through reducing the available capacity of the asset (derating) in order to reduce the potential for failure or extend the operational life. For example, reducing the normal cyclic rating of a power transformer due to moisture content. The reduction of available capacity may have an impact on the ability of the network to supply the forecast load either in system normal or contingency configurations and therefore results in a network limitation. Limitations of this nature are managed in alignment to augmentation processes.

Chapter 9

Network reliability

- 9.1 Reliability measures and standards
- 9.2 Service Target Performance Incentive Scheme (STPIS)
- 9.3 High impact weather events
- 9.4 Guaranteed service levels (GSL)
- 9.5 Worst performing distribution feeders
- 9.6 Safety net target performance
- 9.7 Emergency frequency control schemes and protection systems

9 Network reliability

9.1 Reliability measures and standards

This section describes Energex's reliability measures and standards. Our network planning and security criteria, when combined with reliability targets, underpins prudent capital investment and operating costs to deliver the appropriate level of service to customers.

Energex uses the industry recognised reliability indices to report and assess the reliability performance of its supply network. The two measures used are:

- System Average Interruption Duration Index (SAIDI). Indicating the total minutes, on average, that the system is unavailable to provide electricity during the reporting period
- System Average Interruption Frequency Index (SAIFI). Indicating the average number of occasions the system is interrupted during the reporting period.

9.1.1 Minimum Service Standards (MSS)

The MSS define the reliability performance levels required of our network and include planned and unplanned outages. The MSS limits for SAIDI and SAIFI are applied separately for each of the defined distribution feeder categories – CBD, Urban, and Short Rural.

The reliability limits to apply for each financial year within a five-year regulatory control period are prescribed in Energex's Distribution Authority, No. D07/98. Energex is required to use all reasonable endeavours to ensure that it does not exceed the SAIDI and SAIFI limits set out in its DA for the relevant financial year. Circumstances beyond the Energex's control are generally excluded from the calculation of SAIDI and SAIFI metrics. These exclusions are outlined in clause 9.3 of Energex's DA.

The MSS limits for the regulatory control period are in Schedule 2 of the DA. On 26 June 2025, Queensland Treasury extended the SAIDI and SAIFI limits applicable for the 2020/25 regulatory control period to 30 June 2026.

9.1.2 Reliability performance in 2024-25

The normalised results in Table 17 show that Energex achieved favourable performance against MSS in five out of six of its network performance measures for 2024–25.

Table 17: Annual normalised reliability performance compared to MSS limits

	Feeder Category	2023-24 Actual	2024-25 Actual	2021-25 ⁴² MSS Limits
SAIDI	CBD	3.49	7.53	15
(mins)	Urban	87.09	97.39	106
	Short Rural	196.14	234.64	218
SAIFI	CBD	0.012	0.038	0.150
	Urban	0.665	0.775	1.260
	Short Rural	1.386	1.624	2.460

-

⁴² A single MSS Limit is set for each feeder category for each Regulatory Control Period

Figure 17 depicts the five-year rolling average reliability performance for both SAIDI and SAIFI at whole of regulated network level. Overall performance is a balanced reflection of the targeted investments made during the last two regulatory control periods towards achieving the regulated MSS limits and changes in weather patterns over large areas of Energex distribution networks affecting restoration times.

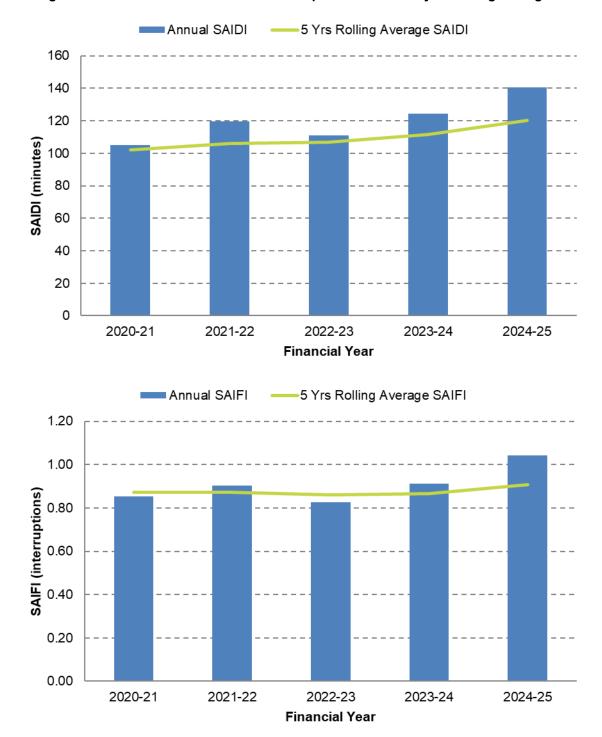


Figure 17: Annual network SAIDI and SAIFI performance five-year rolling average trend

9.1.3 Reliability compliance process

Energex has set its internal planned and unplanned performance parameters. Planned outage parameters provide provision for safety related programs and repairs, maintenance, refurbishment, customer connections and the corporate initiated works. The internal parameters are primarily set based

Network reliability

on average historical performance and are also seasonalised across the years to make greater allowance for unplanned outages during the storm season, between November and March. There is, however, no CAPEX allocated specifically to achieve these internal targets. The internal parameters are used as the reference for tracking performance during a year and to put necessary operational measures in place where required and feasible.

9.1.4 Reliability corrective actions

As shown in Table 17 above, Energex met five of six of its MSS reliability performance targets during 2024-25. Short Rural SAIDI was the only measure not to meet its MSS limit mainly due to an increase in the average duration of planned maintenance works and adverse weather events. Most severe weather events (including Tropical Cyclone Alfred) during the year have been excluded under the Major Event Day criteria. Energex will continue to implement all reasonable endeavours to remain favourable to all MSS limits in future years by maintaining a focus on network reliability.

As one of its regulatory obligations under the DA, Energex also continues to deliver its Worst Performing Feeder improvement program. While, this program is not targeted towards improving the average system level reliability, it continues to address the reliability issues faced by a small cluster of customers supplied by the poorly performing feeders or a section of these feeders.

In addition to the reliability improvement specific works, Energex continues to focus on the reliability outcomes from its asset maintenance, asset replacement and works planning. The asset maintenance and replacement strategies will either continue to have positive influence on reliability performance for this regulatory control period or provide additional benefits on reliability performance in the next regulatory period.

9.2 **Service Target Performance Incentive Scheme (STPIS)**

The AER's Service Target Performance Incentive Scheme (STPIS) provides financial incentives for Distribution Network Services Providers (DNSPs) to maintain or improve service performance. Under the scheme, Energex may receive an increment or decrement to its Annual Revenue Requirement based on performance relative to service targets set for the regulatory control period. Adjustments are applied two years after the performance year.

STPIS for Energex includes two components:

Reliability of Supply

- Measured through unplanned SAIDI and SAIFI, with performance assessed separately for the CBD, Urban and Short Rural feeder categories.
- Incentive rates for these parameters reflect the value customers place on reliability (VCR), energy consumption forecasts and the Annual Revenue Requirement.

Customer service

Measured through the percentage of telephone calls answered within 30 seconds across the entire service area.

Service performance targets for all parameters were approved by the AER as part of its Final Decision for the 2020-25 regulatory control period.

Annual performance for these parameters are reported to the AER through the Regulatory Information Order (RIO), supported by documented processes, assumptions, and methodologies consistent with the AER's reporting requirements. <u>Information on Energex's RIO submission</u>⁴³ can be found on the AER's website.

Website: https://www.aer.gov.au/publications/reports/performance/energex-network-informationannual-information-responses

9.2.1 STPIS results

Reliability of Supply

The normalised performance outcomes for 2024-25 are presented at Table 18. Lower SAIDI and SAIFI values indicate stronger reliability outcomes for customers.

Table 18: Normalised reliability performance compared to STPIS targets

	Feeder Category	2023-24 Actual	2024-25 Actual	2020-25 ⁴⁴ STPIS Targets
Unplanned	CBD	0.84	7.25	6.61
SAIDI	Urban	60.33	71.36	59.85
(mins)	Short Rural	141.50	158.25	136.82
Unplanned	CBD	0.007	0.034	0.081
SAIFI	Urban	0.573	0.647	0.640
	Short Rural	1.188	1.341	1.270

In 2024-25, Energex met one of its six unplanned performance targets under STPIS, with CBD SAIFI performing favourably. Drivers of unfavourable performance included:

- CBD SAIDI: primarily impacted by underground equipment failures.
- Urban SAIDI / Short Rural SAIDI: Affected by longer outage durations, with overhead equipment failures and adverse weather the main contributors, respectively.
- Urban SAIFI: Driven by increased frequency of outages caused by overhead equipment failures.
- Short Rural SAIFI: Primarily impacted by vegetation related outage frequency.

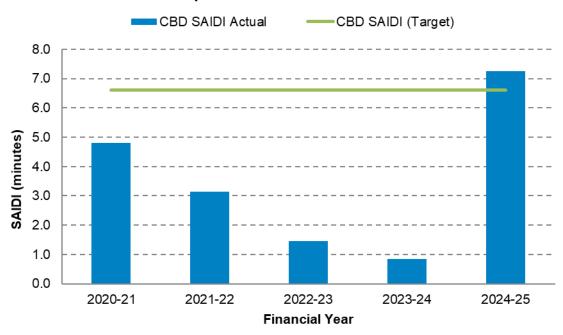
Customer Service

The customer service performance outcomes for 2024-25 are summarised at Table 19. Higher percentage of calls answered within 30 seconds indicate stronger customer service outcomes.

Table 19: Customer Service compared to STPIS targets

	2023-24	2024-25	2020-25 ⁴³
	Actual	Actual	STPIS Targets
Percentage of calls answered within 30 seconds	85%	89.18%	88.08%

Energex delivered highly favourable customer service performance in 2024-25, outperforming the STPIS target by answering a higher percentage of calls within 30 seconds than the 88.08% target.


Figure 18, Figure 19, Figure 20 depict the STPIS targets and results for the 2020-25 period. The actuals are the normalised values (i.e., exclusions are applied as per Clause 3.3 of the STPIS).

_

⁴⁴ A single STPIS Target is set for each feeder category for each Regulatory Control Period

Figure 18: STPIS targets and results for unplanned CBD feeders

Unplanned CBD STPIS SAIDI

Unplanned CBD STPIS SAIFI

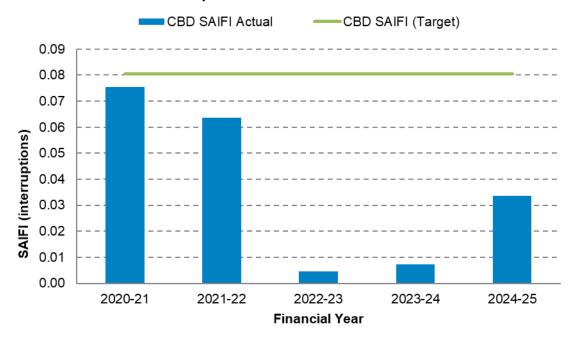
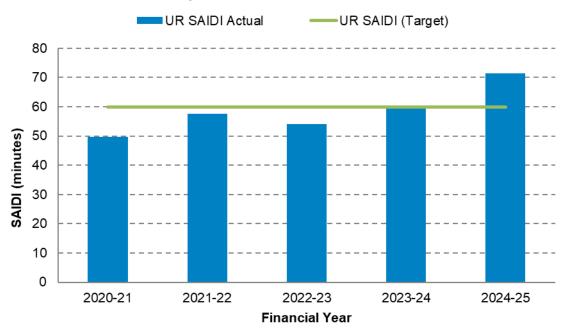



Figure 19: STPIS targets and results for Urban feeders

Unplanned Urban STPIS SAIDI

Unplanned Urban STPIS SAIFI

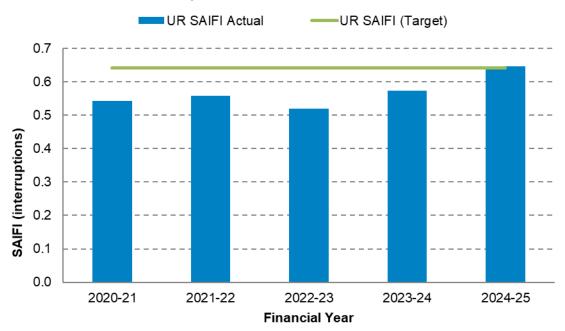
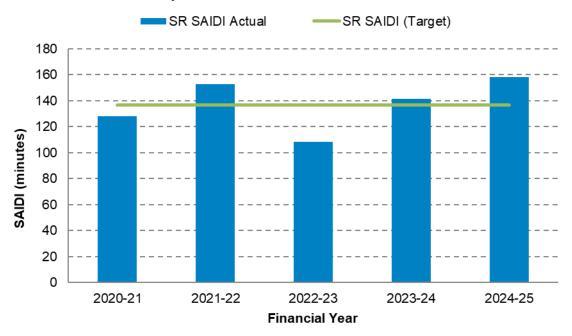
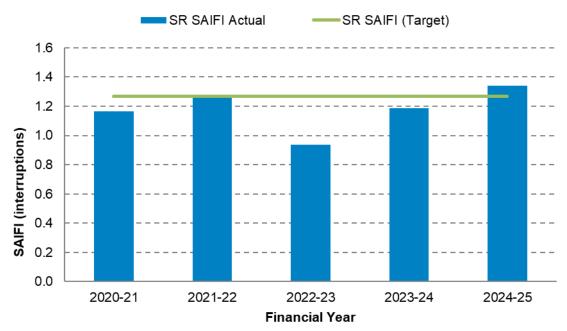




Figure 20: STPIS targets and results for Short Rural feeders

Unplanned Short Rural STPIS SAIDI

Unplanned Short Rural STPIS SAIFI

9.3 High impact weather events

Energex is conscious that its responses to emergency events, particularly those driven by weather, are delivered in an environment of continually increasing need and expectation, both from customers and community stakeholders. More than ever, our response must consider the increasing customer dependency on electricity as technology and appliances become more sophisticated and economic activity becomes more reliant on e-commerce.

Energex response priorities in order of importance are:

- Ensuring personal safety both public and Energex employees
- Protecting equipment and infrastructure from damage
- Efficient supply restoration including meeting communication requirements of customers and emergency service agencies.

Energex plans for the occurrence of extreme weather events and has developed the following plan which is available at our website Company Reports & Plans⁴⁵:

Natural hazards strategy (including Summer Preparedness)

As a further commitment to these priorities and the communities we serve, Energex has established a dedicated team to lead Emergency Planning and Response on behalf of the distribution network. This team will focus on key priorities to further optimise our response capability being emergency planning, preparedness, response, and recovery.

During the reporting period, the Energex distribution network was exposed to multiple severe storms, including Tropical Cyclone Alfred as it approached the coast, impacting the network and subsequently requiring an increased level of response from field and support groups. This resulted in over 500,000 customers being impacted across SEQ. Energex also managed other storm impacts across the region through normal business response arrangements.

Energex utilises an Emergency Lessons Management Framework and regularly conducts detailed reviews of all escalated response events to ensure it confirms the effectiveness of processes and identifies opportunities to improve the safe and timely restoration for the community. To better enable our network to cope with emergency events, a number of preparation exercises are carried out throughout the year in preparation for the summer storm season, bushfire and floods as outlined in the sub-sections below.

The damage assessment process has been significantly enhanced through greater utilisation of technology including the use of mobile devices incorporating geospatial and asset data capture capability. The combined process produces more accurate and timely field data for the planning, restoration, and recovery, which supports improved response times and savings to Energex and the local economy.

9.3.1 Summer preparedness

Energex conducts annual preparations prior to each summer storm season to provide its customers in SEQ with a reliable network that minimises interruptions during extreme weather conditions. Where disruptions occur, we plan to keep the community fully informed and respond as quickly as possible to restore supply safely. Preparations include the review of response programs and processes, resourcing and ongoing network related capital and operating works prior to summer to achieve a secure and reliable network. Comprehensive post implementation reviews are also conducted to identify further opportunities to enhance our processes, plans, technology, people development and overall response capability. These types of reviews are critical as part of continually meeting stakeholder expectations and reducing the negative impact of large-scale disasters on the Queensland community.

-

⁴⁵ Website: https://www.energex.com.au/about-us/company-reports,-plans-and-charters

Network reliability

Key activities undertaken in preparation for severe weather events include but is not limited to:

- Construction of new equipment to a standard that provides increased resilience and reduces the impact severe weather events have on the continuity of supply to our customer
- Maintain a significant mobile generation and a mobile substation fleet that supports the restoration of supply following severe weather events
- Ensure an appropriate inventory of critical spare equipment is on hand at strategic locations to support rebuild and restoration efforts
- Routine inspection and maintenance of vegetation in proximity to overhead powerlines that may contribute to failures of the asset and the creation of a safety risk to the community
- Routine maintenance and inspection of substation equipment, overhead powerlines and poles, inspection of waterway crossings and a range of other network assets
- Annually, nominated overhead powerlines are aerially inspected for any potential conditional defects that may contribute to the risk of failure
- Interagency relationships and cooperation are maintained through representation and collaboration with State, District and Local Disaster Management Groups across the state
- Formalise relationships with other Distribution Entities in support of response and recovery efforts during and post severe weather events through a Memorandum of Understanding (MoU)
- Implementation of a highly trained expert Emergency Management Team that provide central coordination and management of the response and recovery following a severe weather event
- Training in the preparation of formal restoration plans that provides prioritised focus on restoring services to critical community infrastructure such as hospitals and sewerage and water treatment plants
- Community Engagement in preparation for, during response and during the post event recovery
 is a strong focus and is provided through a combination of our customer contact centres, social
 and mainstream media platforms and our community outreach teams that are deployed into the
 affected communities.

Energex continues to utilise LiDAR technology to acquire 3D representations of network assets which are displayed in a geo-spatial visualisation application to assist with vegetation management and asset maintenance. With this capability Energex carries out LiDAR inspection of the entire network every 3 years. This information identifies defects and is contributing to reduced maintenance and planning costs, with increased safety and reliability of supply for our customers and communities. The data captured is processed to enable measurement of the network and clearances to surrounding objects such as buildings, terrain, and vegetation.

In addition to these specific activities, much of Energex's annual PoW to develop, maintain, and operate the network is aimed at providing a resilient network in preparation for the summer storm season.

9.3.2 Bushfire management

Energex has a range of programs and initiatives to prevent and mitigate the impacts of network-initiated fires and build resilience to bushfires in the landscape. Energex has on-going asset replacement and improvement programs in high bushfire risk areas. Energex also reports and investigates suspected asset related bushfires.

Key activities undertaken in preparation for bushfire events include but is not limited to:

Engaging a dedicated weather service provider to provide specialist weather advice on forecast
weather patterns including heatwaves, storms and lightning levels which is overlayed with
Sentinel satellite fire detection information and network asset locational information to inform
event management team

- Maintain a significant mobile generation and a mobile substation fleet that supports the restoration of supply following significant network damage resulting from bushfire events
- Inter-agency relationships and cooperation are maintained through representation and collaboration with the State, District and Local Disaster Management Groups across the state and the State Bushfire Management Committee
- Bushfire risk modelling by industry recognised academic experts to improve the identification and management of the ignition and consequential damage risk to assets
- Implementing a vegetation management strategy to reduce fuel load in proximity to powerline poles and the potential for vegetation contact with overhead powerlines
- Routine maintenance and inspection of overhead powerlines and poles and a range of other network assets. This program extends to privately owned powerline assets where they make connection to the utility assets
- Lines defect remediation repair and remediation of defects identified through asset inspection, such as cross-arms, insulators tie wires etc. This includes programs for condemned pole replacement
- Conservative operational work practice during periods of heightened bushfire danger including but not limited to:
 - Limited offroad use of motor vehicles and machinery that may trigger an ignition event from the high operating temperatures of exhaust systems
 - Special consideration when using equipment such as generators, chainsaws, brush cutters, metal cutting or welding to determine fire start risk and the appropriate controls to reduce that ignition risk.
- Capital investment to reduce the likelihood of fire starts from electrical assets and to reduce the risk of network asset damage from external fires. Examples of the range of initiatives undertaken include but is not limited to:
 - Line refurbishment programs
 – such as replacement of aged (or corroded) conductor, installation of insulated/covered conductors
 - Customer Service line replacement programs
 - o The transition to a range of updated equipment standards as new equipment is installed
 - Fire-resistant coatings such as fireproof paint and fireproof wraps for wood poles in fire prone areas
 - Trialling of fire resilient pole materials/technologies (such as composite fibre) along with the ongoing use of concrete and steel rebutted poles in bushfire prone areas.

9.3.3 Flood resilience

Following the 2022 floods which impacted SEQ region, Energex reviewed its planning guidelines for installing infrastructure in flood prone areas and reviewed flood resilience measures. During the 2024-25 monsoon season, the Energex network experienced some flooding associated with Tropical Cyclone Alfred as it approached the coast. Flood resilient electrical infrastructure is important, not least because after a flood, other essential services depend on electricity to operate. Energex's local flood plans have been updated for major river systems and resilience projects planned across the region.

Key activities undertaken in preparation for flooding events include but are not limited to:

- Mapping through our Geospatial Information System to identify the network equipment installed in flood prone areas
- Modernisation of flood modelling through Geospatial Information Systems as a step toward a dynamic risk assessment and agile response approach

- Engaging a dedicated weather service provider to provide specialist weather advice on forecast weather patterns likely to cause flooding
- Interagency relationships and cooperation are maintained through representation and collaboration with both the State and Local Disaster Management Committees/Centres across the state
- Standardisation of ground mounted equipment such as switches, distribution substations and pillars enable efficient replacement when inundation causes irreparable damage
- Memorandum of Understanding with other agencies and engaging with weather service providers including the Bureau of Meteorology to provide information on river and creek levels along with historical inundation contouring to inform local flood management plans
- Development and annual version review of local flood management plans identify the electrical equipment and customer installations at risk of inundation and allow proactive precautionary isolation of electrical supply to manage inundation risk
- Capital investment to increase resilience and reduce the inundation risk to electrical assets are made through an annual Program of Work that include but is not limited to:
 - o Relocation of selective ground mount equipment in flood prone areas
 - Installation of additional switching points on the network to reduce the impact of preventative isolation on the continuity of supply to customers
 - o Providing additional drainage in large substations where groundwater presents an increased risk to electrical equipment
 - Developing flood barricades for large substations where overland water presents a risk of inundation within the control buildings
 - o Construction of new equipment is to a higher standard to increase resilience and reduce the impact flood events have on the continuity of supply to our customers
- Standardisation of the post flood asset condition assessment and maintenance repair activities on inundated equipment to expedite the return to service where repair is possible
- Maintain a significant mobile generation and a mobile substation fleet that supports the restoration of supply following severe weather events
- Ensure an appropriate inventory of critical spare equipment is on hand at strategic locations to support rebuild and restoration efforts
- Standardisation of installed equipment that supports an efficient retrofit replacement for assets irreparably damaged as a result of inundation.

9.4 Guaranteed Service Levels (GSLs)

Section 2.3 of the <u>Electricity Distribution Network Code (EDNC)</u>⁴⁶ specifies a range of Guaranteed Service Levels (GSLs) that DNSPs must provide to their small customers. The GSLs are notified by the Queensland Competition Authority through the code. Where we do not meet these GSLs we pay a financial rebate to the customer.

GSLs are applied by the type of feeder supplying a customer with limits appropriate to the type of GSL as outlined below in Table 20. Some specific exemptions to these requirements can apply. For example, we do not need to pay a GSL for an interruption to a small customer's premises within a region affected by a natural disaster (as defined in the EDNC).

_

⁴⁶ Website: https://www.energex.com.au/our-network/electricity-distribution-network-code

Table 20: GSL limits applied by feeder types

EDNC	GSL	CBD feeder	Urban feeder	Short rural feeder	
Clause 2.3.3	Wrongful disconnections (Wrongfully disconnect a small customer)	Applies to all feeders equally			
Clause 2.3.4	Connections (Connection not provided)	On business day agreed with customer. Applies to all feeders equally			
Clause 2.3.5	Reconnections (Reconnection not provided within the required time)	If requested before 12.00pm - same business day. Otherwise next business day			
Clause 2.3.7	Appointments (Failure to attend specific appointments on time)	On business day agreed with customer. Applies to all feeders equally			
Clause 2.3.8	Planned Interruptions (Notice of a planned interruption to supply not given)	Four (4) business days as defined in Part 4: Division 6 of the NERR ⁴⁷ under Rule 90. Applies to all feeders equally			
Clause 2.3.9(a)(i)	Reliability – Interruption Duration (If an outage lasts longer than)	8 hours	18 hours	18 hours	
Clause 2.3.9(a)(ii)	Reliability – Interruption Frequency (A customer experiences equal or more interruptions in a financial year)	10	13	21	

9.4.1 Automated Guaranteed Service Level payment

The EDNC requires that a DNSP uses its best endeavours to automatically remit a GSL payment to an eligible customer. Customers receive the payment for most GSLs within one month of confirmation. However, in the case of Interruption Frequency, the GSL payments will be paid to the currently known customer once the requisite number of interruptions has occurred. Table 21 shows the number of claims paid in 2024-25.

Table 21: GSLs claims paid 2024-25

GSL	Number Paid	Amount Paid
Wrongful disconnections	9	\$1,395.00
Connection not provided by the agreed date	927	\$386,198.00
Reconnection not provided within the required time	15	\$1,488.00
Failure to attend appointments on time	202	\$12,524.00
Notice of a planned interruption to supply not given	531	\$18,071.00
Interruption duration GSL	1251	\$155,124.00
Interruption frequency GSL	23	\$2,852.00
Total	2,958	\$577,652.00

⁴⁷ Website: National Energy Retail Rules

9.5 Worst performing distribution feeders

In accordance with Clause 11 of the Distribution Authority No. D07/98, Energex continues to monitor the worst performing distribution feeders on its distribution network and report on their performance. Under the authority, Energex is also required to implement a program to improve the performance outcomes for the customers served by the worst performing distribution feeders.

In October 2019 the worst performing feeder improvement program criteria set out in Clause 11.2(c) of the Distribution Authority No. D07/98 were amended and are outlined below:

Clause 11. Improvement Programs

- 11.2(c) The worst performing feeder improvement program will apply to any distribution feeder that meets the following criteria:
- (i) The distribution feeder is in the worst 5% of the network's distribution HV (High Voltage) feeders, based on its three-year average SAIDI/SAIFI performance; and
- (ii) The distribution HV feeder's SAIDI/SAIFI outcome is 200% or more of the MSS SAIDI/SAIFI limit applicable to that category of feeder.

The list of our worst performing distribution feeders, as defined by Clause 11.2(c) of the Distribution Authority No. D07/98 up to June 2025, has been provided in Appendix F. Energex's worst performing distribution feeder assessment for 2024-25 is summarised below:

- 4% of Energex's distribution feeders meet the worst performing feeder improvement program criteria based on three-year average performance up to June 2025 (83 distribution feeders in total – zero CBD, 15 Urban and 68 Short Rural)
- The 83 distribution feeders meeting the worst performing feeder improvement program criteria supply 3.5% of the Energex's customer total
- 52 of the reported worst performing distribution feeders have carried over from the list from the 2023-24 reporting period.

Table 22 below shows the comparative three-year average SAIDI/SAIFI for the reported worst performing distribution feeders across the feeder categories for 2024-25.

Feeder Category3 Year Average Feeder SAIDI (mins)3 Year Average Feeder SAIFI (int)Urban6012.02Short Rural9144.81

Table 22: 2024-25 worst performing feeder - performance

9.5.1 Details of worst performing distribution feeders reported from 2024-25

CBD feeders

No feeders in the CBD category have met the worst performing distribution feeder criteria.

Urban feeders

The Urban worst performing distribution feeder list consists of 15 feeders. From the total of 15 feeders 10 met only the worst performing distribution feeder SAIDI criteria and five met only the SAIFI criteria.

Short rural feeders

The Short Rural worst performing distribution feeder list consists of 68 feeders. From the total of 68 feeders 56 met only the worst performing distribution feeder SAIDI criteria, one met only the SAIFI criteria, and 11 met both the SAIDI and SAIFI criteria.

A full report on Energex's worst performing distribution feeders based on 2024-25 performance is available in Appendix F.

9.5.2 Review of worst performing distribution feeders from 2023-24

- 60% of the 81 worst performing feeders identified in 2023-24 saw an improvement in their annual SAIDI as of June 2025. Of those feeders, 17 are now favourable to the June 2025 MSS SAIDI limits.
- 53% of the 81 worst performing feeders identified in 2023-24 saw an improvement in their annual SAIFI as of June 2025. Of those feeders, 37 are now favourable to the June 2025 MSS SAIFI limits.

During the 2024-25 period Energex completed detailed engineering reviews for four worst performing distribution feeders. The feeder reviews included detailed analysis of different types of outages (planned and unplanned). There were four feeder reliability improvement projects raised following the feeder reviews.

9.5.3 Worst performing feeder improvement program

Consistent with the 2020-25 regulatory term, Energex only sought limited CAPEX for the worst performing feeder improvement program from the AER for the 2025-30 regulatory control period. We are ensuring that the investment in the worst performing feeder improvement program is prudently spread across different feeders that meet the Distribution Authority No. D07/98 improvement program Clause 11 criteria and within the network investment envelopes of the 2025-30 Distribution Determination.

The reliability improvement solutions identified from the worst performing distribution feeder reviews conducted in the 2020-25 regulatory period have mainly included moderate capital investment options and this approach has continued in this regulatory period. These mainly included installation of new Automatic Circuit Reclosers, Sectionalisers, Remote Controlled Gas Switches or replacement of existing manual switching devices. Some of the higher capital investment options have included reconductoring, covered conductors and overhead tie points. Energex will continue reviews of its worst performing distribution feeders during 2025-26.

The overall approach for the worst performing feeder performance improvement includes the following in order of preference and affordability.

- 1. Improved network operation by:
 - investigating to determine predominant outage cause
 - implementing reliability or operational improvements identified through the investigation of any unforeseen major incidents
 - improving fault-finding procedures with improved staff-resource training and availability, and line access
 - improving availability of information to field staff to assist fault-finding, which could include communications, data management and availability of accurate maps and equipment
 - planning for known contingency risks until permanent solutions are available
 - improving and optimising management of planned works.

Network reliability

- 2. Prioritisation of preventive-corrective maintenance by:
 - scheduling asset inspection and defect management to poorly performing assets early in the cycle
 - scheduling worst performing distribution feeders first on the vegetation management cycle
 - undertaking wildlife mitigation (e.g., birds, snakes, possums, frogs) such as pole guards, conductor configuration and spacing, and line markers for worst performing distribution feeders.
- 3. Augmentation and refurbishment through CAPEX by:
 - refurbishing or replacing conditioned assets (for both powerlines and substations).

9.6 Safety net target performance

In accordance with Clause 10 of the Distribution Authority No. D07/98, Energex will ensure, to the extent reasonably practicable, that we achieve Safety Net compliance and continue to monitor unplanned outages on our sub-transmission network and report on our performance against Safety Net targets. As per Clause 10.1, the purpose of the service safety net, is to seek to effectively mitigate the risk of low probability high consequence network outages to avoid unexpected customer hardship and/or significant community or economic disruption.

In 2024-25 there were no events exceeding the service Safety Net targets.

9.7 Emergency frequency control schemes and protection systems

The Energex network is predominately comprised of centralised under frequency protection schemes. Centralised schemes are those that have common measuring relays that have one or more under frequency stages, assertion of a stage is sent to a circuit breaker via a physical selector switch. The mode of these schemes is static and cannot be simply controlled remotely.

The Energex Under Frequency Loading Shedding (UFLS) schemes are unaware of the load current on the feeders being controlled, these feeders operate solely based on under frequency. To meet the requirements of load under control, Energex UFLS schemes will progressively be enhanced to be load aware (prevent tripping when feeders are acting as a source). Majority of Energex distribution feeders have been assigned to its UFLS scheme. Under Frequency Load Shedding protection schemes are the only wide area protection or control scheme that are expected to have capability of leading to cascading outages or major supply disruptions.

Chapter 10

Power quality

- 10.1 Power quality supply standards, codes and guidelines
- 10.2 Power quality performance 2024-25
- 10.3 Power quality corrective actions
- 10.4 Quality of supply

10 Power quality

The quality of network power affects both the customer experience, and the efficiency and stability of the network. This section covers two related, but distinct areas which are Quality of Supply (QoS) and Power Quality (PQ). PQ is the measure of compliance of measured system wide network conditions with defined parameter limits. QoS is a measure of the customer-initiated requests for Energex to investigate perceived issues with the quality of the supply.

10.1 Power quality supply standards, codes and guidelines

The Electricity Regulation 2006 (Qld) and Schedule 5.1 of the NER lists a range of network performance requirements to be achieved by DNSPs. Energex's planning policies takes these performance requirements into consideration when reviewing network developments.

Some of the relevant requirements under the Regulations/Rules include:

- Magnitude of Power Frequency Voltage During credible contingency events, supply voltages should not rise above its normal voltage by more than the time dependent limits defined in Figure S5.1a.1 of the Rules
- Voltage Fluctuations A NSP must maintain voltage fluctuation (flicker) levels in accordance with the limits defined in Figure 1 of Australian Standard AS 2279.4:1991. Although a superseded standard, it is specifically referenced under a Derogation of the Rules (clause 9.37.12) applicable to Queensland.
- Voltage Harmonic Distortion A NSP must use reasonable endeavours to design and operate
 its network to ensure that the effective harmonic distortion at any point in the network is less
 than the compatibility levels defined in Table 1 of Australian Standard AS/NZS 61000.3.6:2001
- Voltage Unbalance A NSP has a responsibility to ensure that the average voltage unbalance measured at a connection point does not vary more often than once per hour by more than the amount set out in Table S5.1a.1 of the NER.

10.2 Power quality performance 2024-25

10.2.1 Power quality performance monitoring

Energex currently has in excess of 17,455 functioning PQ monitors on distribution transformers throughout the network that monitor and record the network PQ performance. These monitors are remotely monitored and provide an insight into power quality performance at the junction of the Medium Voltage (MV) and LV networks. This is currently the closest practical and economically justifiable point to monitor PQ parameters for customers and the LV network.

Each functioning monitor contributes to provide an indication of the state of the network for PQ parameters. The monitor data is downloaded four times daily, recorded, assessed, and presented based on 10-minute averages. The data is usually available the following day. PQ reports are presented in various ways to identify potential network issues that may need further investigation and resolution. Energex takes a pro-active approach to identify possible sites where PQ issues may exist. Sites that exceed limits are prioritised and emailed to PQ Subject Matter Experts (SMEs) daily for action. PQ SMEs then work with relevant teams to rectify issues before they impact customers' equipment and/or safety.

10.2.2 Steady State Voltage Regulation - overvoltage

The number of monitored sites that reported overvoltage outside of regulatory limits of 253V was 1.7% for 2024-25. This means 1.7% of sites recorded an exceedance of the upper limit for more than 1% of the time based on 10-minute averages. This is a slight improvement from the 2023-24 year when there were 1.9% of sites with overvoltage recorded. Figure 21 shows the percentage of monitored sites for the last five years which reported overvoltage issues.

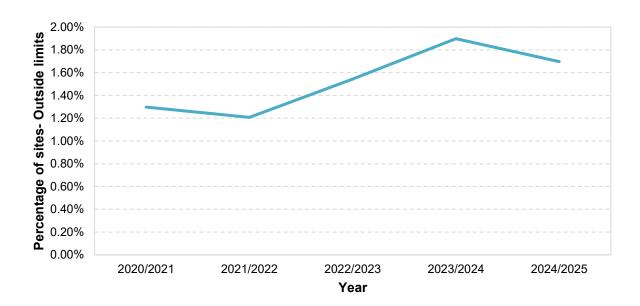


Figure 21: Percentage of monitored sites reporting overvoltage

10.2.3 Steady State Voltage Regulation – undervoltage

While the current Queensland regulation has a lower limit of 207V (-10%), Energex has a preferred lower operating limit of 216V (-6%) to accommodate customers with existing equipment such as motors manufactured to the pre-existing standards with a nominal voltage of 240V. Therefore, Energex is continuing to report against 216V (-6%) limit.

The number of monitored sites recording undervoltage issues outside of this limit of 216.2V was 2.21% for 2024-25. This means 2.21% of monitored sites recorded an exceedance of the lower limit for more than 1% of the time based on 10-minute averages.

Figure 22 shows the percentage of monitored sites that have recorded undervoltage conditions for the last five years. There has been an increase in the number of sites experiencing under voltage issues.

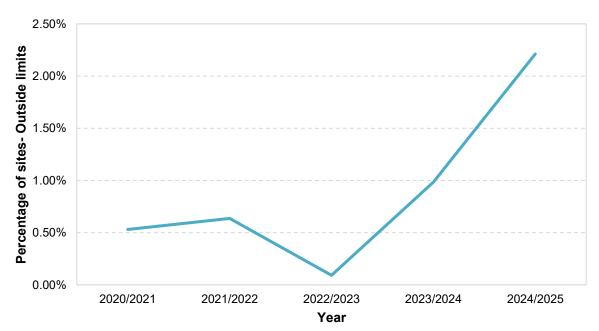


Figure 22: Percentage of monitored sites reporting undervoltage

10.2.4 Voltage unbalance

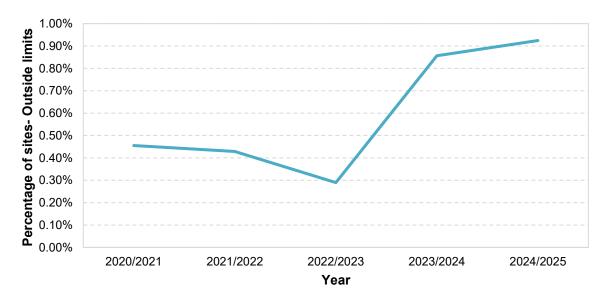

Data from the monitored three-phase sites shows that 7.71% of these sites were outside of the required unbalance standard for LV of 2.5%. This means that 7.71% of sites were unbalanced for more than 1% of the time based on 10-minute averages during 2024-25. Figure 23 shows the number of sites that have recorded unbalanced conditions for the past five years.

Figure 23: Percentage of monitored sites reporting voltage unbalance

10.2.5 Harmonic distortion

Harmonics are a measure of the impurity of the voltage and are recorded as Total Harmonic Distortion (THD) representing the summation of all harmonic levels from the 2nd to the 50th harmonic. Not all monitored sites are capable of measuring harmonics. There were 0.92% of capable sites recording harmonics that exceeded the regulatory limits of 8.0% THD during 2024-25. Figure 24 below shows the percentage of monitored sites that exceed THD limits.

Figure 24: Total Harmonic Distortion sites

10.3 Power quality corrective actions

During 2024-25 Energex continued to focus on its voltage management strategy for all voltage levels of the network and will continue to proactively, prudently and efficiently respond to PQ issues identified by monitors. This will be further supported by determining suitable methods to monitor and rectify the network to ensure compliance continues.

As part of its OPEX program, Energex will carry out targeted transformer tap adjustment and rebalancing programs to address voltage and unbalance issues especially in areas with large solar PV penetration.

In addition to network monitors, Energex will be advancing the future available data from customers digital smart meters and are setting up programs to proactively identify PQ issues and processes to prioritise and remedy any identified issues.

10.4 Quality of supply

Energex responds to customer QoS enquiries/complaints by carrying out investigations, which may include the installation of temporary monitoring equipment on the network and at customers' premises. This data is used in conjunction with existing network data for analysis to determine what remediating is necessary.

QoS enquiries occur when a customer contacts Energex with a concern that their supply may not be meeting the required standards. Figure 25 shows that the number of enquiries on a normalised basis per 10,000 customers per month. There has been a continued decrease over the last 5 years in the number of QoS enquiries.

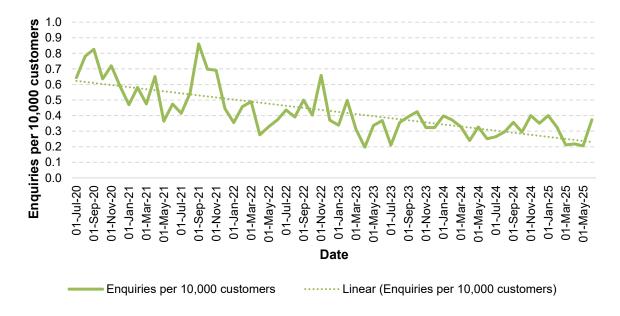


Figure 25: Quality of supply enquiries per 10,000 customers per month

The number of QoS enquiries received in 2024-25 decreased by 30.7% when compared to the previous year from 851 to 589 enquiries. Figure 26 shows a breakdown of the enquiries received by the reported symptoms for 2024-25. The largest identifiable category was Solar PV and Unknown at the initial contact. The Unknown category is mainly associated with customer installations and the issues that couldn't be determined at the initial call. The number of inquiries associated with the connection of Solar PV systems has remained consistent while high voltage enquires have slightly increased and low voltage enquiries are at a similar level to 2023-24.

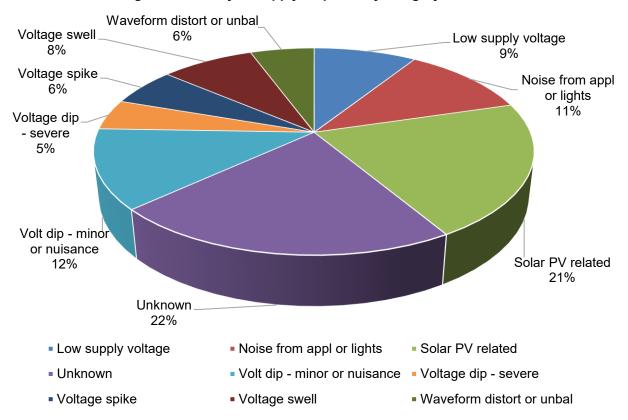


Figure 26: Quality of Supply enquiries by category 2024-25

Chapter 11

Network challenges and opportunities

- 11.1 Modernising the distribution network
- 11.2 Solar PV
- 11.3 Battery Energy Storage Systems
- 11.4 Electric vehicles
- 11.5 Dynamic connections
- 11.6 Customer connection impacting system strength
- 11.7 Land and easement acquisition
- 11.8 Impact of climate change on the network

11 Network challenges and opportunities

The rapid uptake of rooftop solar, BESS, and EVs presents both challenges and opportunities for Energex. These technologies increase the complexity of the distribution network but also create new opportunities to deliver value to customers and communities. Energex is responding by improving network visibility, enabling dynamic connections, and modernising operational practices to support safe, reliable, and affordable energy supply in a high-CER environment.

Central to this transition is the importance of compliant CER connections. Ensuring installations meet regulatory and performance standards is critical for maintaining system security, efficiency, and facilitating effective CER orchestration.

In addition, Energex faces significant network challenges driven by rapid population growth and rising energy demand, which require substantial investment in infrastructure to maintain reliability and capacity. The upcoming Olympics and Paralympics add further pressure, necessitating enhanced resilience and scalability to support increased loads and critical event operations. At the same time, the growing severity and frequency of extreme weather events such as cyclones, floods, and heatwaves pose risks to network stability and asset integrity, demanding robust contingency planning and accelerated adoption of climate resilient technologies.

While land acquisition for network expansion, the growing impacts of climate change and need for greater resilience against extreme weather events also present increasing difficulties, they also serve as catalysts for innovation, collaboration, and continuous improvement in how we design, operate and deliver services to Queenslanders.

11.1 Modernising the distribution network

It is highly likely that the current regulatory control period (to 2030) and probably the next decade will see:

- Significantly higher levels of CER
- Growing capacity of flexible CER (such as BESS) and EVs and opportunity to unlock additional value to customers and communities
- An increased emphasis on DNSPs transitioning into Distribution System Operator (DSO) to enable CER orchestration.

Queensland already has world leading levels of rooftop solar PV, with increasing penetration of EVs and substantial rise in the number of home battery systems, driven by the Federal Government's Better Cheaper Home Battery program.

Energex have been effective in implementing strategies to host these increasing levels of rooftop solar, but penetration rates are approaching levels where the visibility and predictability of these resources are impacting broader power system operations and efficiency. This is recognised as a national issue and one of the key actions recommended by the National CER Taskforce is the introduction of a formal Distribution System Operator (DSO) role, to help orchestrate CER effectively and manage system security in a high-CER power system.

Effective coordination of CER, large-scale DER and network assets is critical to support continued CER growth while maintaining affordability, security and reliability of supply. This requires new capabilities to operate a complex system comprising millions of CER in real-time; some participating in market mechanisms, others focused on self-consumption and bill reduction.

Network challenges and opportunities

In response, Energex has been developing no-regret capabilities to improve network visibility and enable dynamic connection of CER. Our vision for a Queensland DSO is to modernise the operation and planning of the distribution network to achieve the following three goals:

- Improve affordability and sustainability by enabling least cost energy transition, maximising CER and network value, and enabling market opportunities;
- Ensure Security and Reliability by providing additional Power System Planning and Operational functions, supporting centralised energy system planning and policy;
- Enhance Sustainability by actively supporting an increased penetration of Distributed/Customer Energy Resources

11.2 Solar PV

The adoption of small-scale solar PV systems has changed the way power travels through the network, from a purely one-way to bi-directional electricity flow. The impact is greatest in the LV network and creates system design and operational challenges. Due to the high PV penetration on the Energex network, it is progressive in its approach to respond to issues and look for opportunities. Energex is deploying projects and initiatives to ensure safe operation of the network, a secure and high-quality supply, and economically viable solutions to benefit customers with solar PV and those without PV.

11.2.1 Solar PV statistics

The number of new solar PV connections to Energex's network in 2024-25 (around 27,200) was the lowest in seven years and almost 30% lower than the total in 2023-24. This reduction was reinforced by a downward trend in new PV connections over the year. Across 2024-25, an average of almost 2,300 new PV systems were connected each month with a combined capacity of around 30MVA per month. The average residential inverter capacity rose from 9.8kVA across all systems installed in 2023-24 to 10.6kVA, or by 9%, across 2024-25. Energex had 627,603 PV systems connected as of June 2025 with a total inverter capacity of 4,048MVA, and almost 97% of systems installed on residential rooftops.

By June 2025, slightly more than 50% of detached houses and 39% of all residential premises in SEQ had a solar PV system connected, with an average inverter capacity of 5.6kVA.

Figure 27 shows the increase in installed solar PV inverter capacity across solar tariff types. During 2024-25, the 358MVA of PV capacity added represented only a 14.3% decrease on the total of the previous year, despite the number of PV systems dropping by almost 30%. The capacity added in both years did not include any large-scale solar farms. The ongoing growth in the number of small-scale and medium-scale PV systems is increasing the number of distribution transformers with high solar PV penetration. In 2024-25, 74% of zone substations experienced reverse power flows during the middle of at least one day, up from 69% the previous year. Although networks can typically cope with high levels of excess PV generation being exported to the grid, this export does raise voltages (sometimes leading to quality-of-supply issues), stress network components and sees some of that electrical energy wasted as heat.

Another significant network issue resulting from increased solar PV connections is voltage rise and unbalance on LV networks. Voltage typically rises notably when solar PV generation and export is high.

Energex received only 124 PV-related QoS enquiries in 2024-25. Pleasingly, this number was 40% lower than the number in the previous year, which was 33% lower than in 2022-23. This result reinforces the value of initiatives we have undertaken to minimise the impact of increasing solar PV volumes on the network and reduce the cost to resolve constraints. This includes the transition to the 230V network standard, tariff review, implementing our Local Network Battery Plan and introducing more innovative dynamic connection options which increase utilisation within the constraints of the network. The impacts of PV generation exported to the grid are also slowly reducing as more PV owners add BESS and purchase EVs.

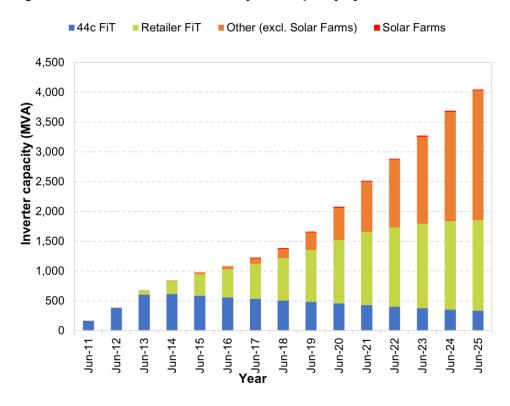


Figure 27: Grid connected solar PV system capacity by tariff as of June 2025

We will continue to collaborate with a diverse group of industry partners through projects such as our Grid Visibility Systems Integration work to apply advanced modelling and data analysis. Ongoing enhancement of our grid visibility capabilities also helps us host additional solar PV capacity. Implementing a 230V network standard facilitates more voltage variation, allowing existing solar PV systems to operate more effectively and allowing more customers to connect solar PV systems and export to the grid.

11.2.2 Impact of solar PV on load profiles

Solar PV is impacting network load profiles, asset utilisation, load forecasting and load volatility. Before solar PV systems reached a critical mass, the total aggregated demand on our network peaked between mid-afternoon and early evening during summer, generally on the hottest days of the year. The system demand peak is now generally recorded in the evening, so the timing and level of the highest peaks are not directly affected by PV generation, as PV systems are not generating at this time.

Figure 28 shows the daily load profile of North Maclean zone substation (located south of Brisbane) in the shoulder season as the penetration of solar PV systems on this substation has grown. The trend of reducing minimum demand on the zone substation during daylight hours is apparent.

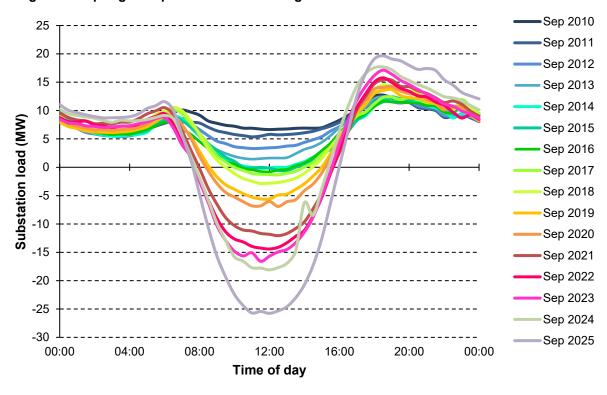


Figure 28: Spring load profile with increasing solar PV of North Maclean zone substation

The increase in Embedded Generation on our feeders makes it more challenging to identify underlying load growth, as additional daytime load can be offset by local generation. Variation to electricity use patterns or growth in load only becomes fully apparent when an unexpected event causes the solar PV systems to stop generating.

On occasions where solar PV generation is not available, such as during an afternoon thunderstorm, the full customer load must be supplied from the network, which can result in large and rapid variations in electricity flows.

In such instances, the demand on the network is extremely volatile; low during the day with consumers generating and consuming electricity, then rapidly peaking when the storm clouds roll in. Solar PV generation can fall away completely for a short time, yet the customer load reduction can be delayed as air conditioners continue to run. The net result is a peak demand event in the early afternoon that can be higher than the network's usual evening peak.

Networks are designed to supply the maximum demand required by our customers, increasing penetrations of intermittent embedded generating units will significantly increase the complexity of planning and operating networks. This could result in excessive voltage drops, overloading of components, protection operation issues and loss of supply if not appropriately managed.

Figure 29 indicates the proportion of customers with solar PV. Figure 30 indicates the total installed capacity in each zone, with the substation areas highlighted. Figure 31 displays the percentage of solar PV penetration by zone substations.

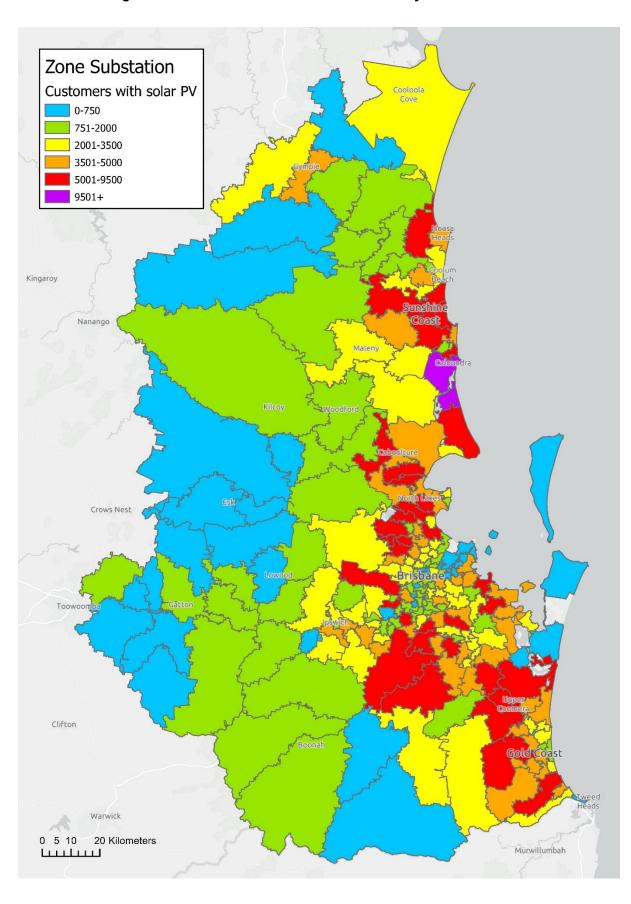


Figure 29: Number of customers with solar PV by zone substation

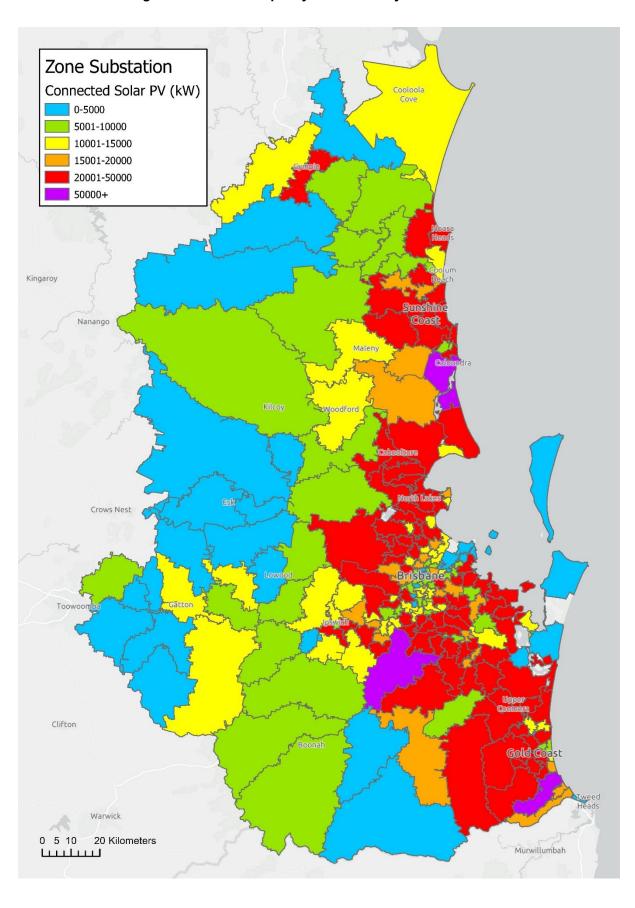


Figure 30: Installed capacity of solar PV by zone substation

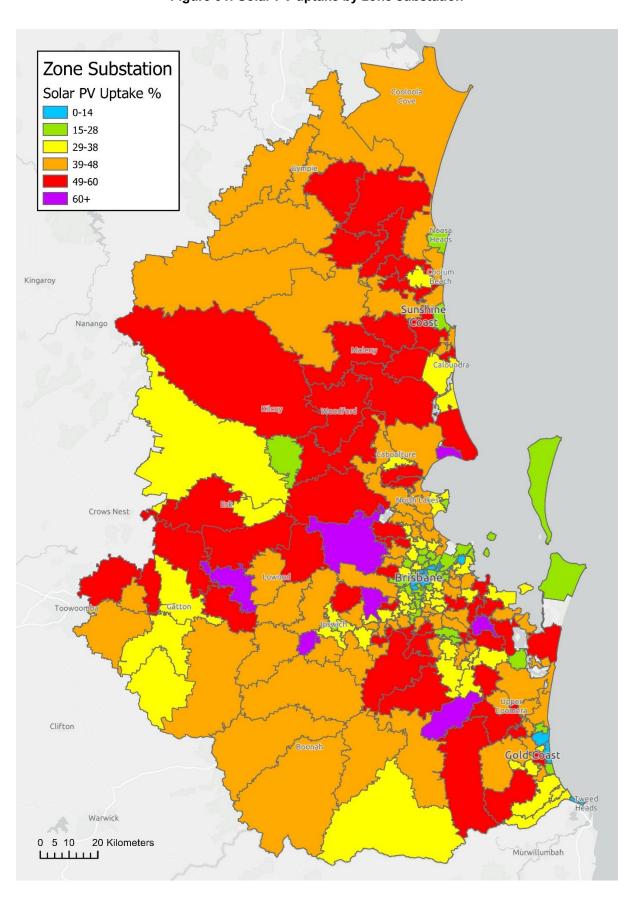
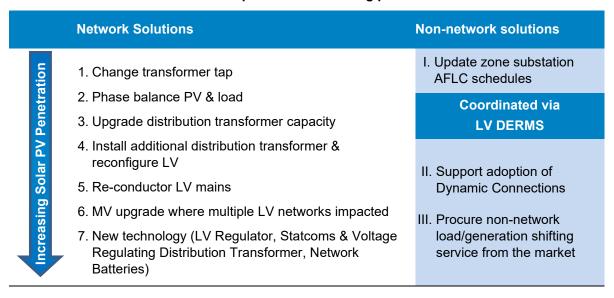



Figure 31: Solar PV uptake by zone substation

11.2.3 Solar PV remediation options

A range of traditional, new technology and non-network solutions are used to support increasing PV penetrations at the LV, Medium Voltage (MV) and Zone Substation levels. The most cost-effective solution and required PV penetration will be site specific and may require several customised solution(s) to maximise PV hosting capacity. Table 23 lists a range of frequently considered options which are site specific.

Table 23: Remediation options for increasing penetrations of solar PV

11.2.3.1 Minimum system load – emergency backstop mechanism

Overall system demand during the middle of the day is falling due to large amount of electricity being generated from solar systems and exported back into the electricity grid. This is creating a challenge referred to as 'minimum system load'. There are a range of actions that network operators implement to ensure our system stays safe and secure during these times. The majority of Queensland is connected to the national electricity grid, so changes between supply and demand can typically be managed across the network by the AEMO, Powerlink, Energex, and Ergon Energy Network. However, modelling by AEMO finds that if the connection between Queensland and the national electricity grid is interrupted when there is very low demand and high levels of solar output, there is a risk that some parts of the electricity network in Queensland could experience blackouts. To reduce this risk and allow more solar to be safely connected to the network, a new emergency measure has been established that can be used as a last resort (only after all other actions have been exhausted) to keep our power supply secure. This emergency measure is referred to as the 'emergency backstop mechanism.'

From 6 February 2023, all new and replacement inverter energy systems (like rooftop solar PV), with aggregated capacity of 10kVA and above, are required to install a Generation Signalling Device (GSD) that will enable a signal to the inverter to switch off supply. The signal is sent to the GSD from Energex's powerline signalling system, known as Audio Frequency Load Control (AFLC). For larger sites with multiple inverters, including embedded networks, installers have the option of using one GSD on each inverter or installing a single GSD connected to a Demand Response Controller. Some exclusions apply to the requirement to install a GSD – including inverter energy systems where the inverter is solely supplied by a battery and any inverter energy systems installed at a location that is not serviced by the AFLC system.

The use of the emergency backstop mechanism will only occur by Energex under the direction of AEMO in alignment with Energex's Distribution Authority, to maintain a safe and secure network. This will typically be in response to specific network emergency conditions, such as when the main electricity connection between Queensland and the National Electricity Market (NEM) is offline at the same time there are high levels of PV generation being exported back into the grid. Further information can be

obtained from Emergency backstop mechanism⁴⁸.

11.2.4 Key issues arising from embedded generation applications

Energex continues to focus on improving efficiency and satisfying customer experiences. The continued focus on the revision of processes, together with additional training for technical staff continues the path to developing a more customer-centric approach.

Key issues for Embedded Generation include:

- Voltage management on distribution feeders with significant solar PV generation connected
- Fault level impacts including the increase in fault levels exceeding the rating of shared distribution assets located in the vicinity of embedded generator connections involving rotating machine generators
- Management and co-ordination of operational issues with an increasing number of embedded generators.

These issues present on-going challenges for Energex in terms of managing operational costs while also maintaining compliance, safety, and quality of supply to the standards required by regulations.

11.2.4.1 Connection enquiries received

Energex has established processes which apply to connection enquiries and applications for embedded generators. These processes comply with the requirements of the National Electricity Rules. In 2024-25 the number of connection enquiries received is shown in Table 24. For micro EG 30kW or less (mainly solar PV), there is no connection enquiry phase. i.e., all connection requests are processed as applications.

Table 24: Embedded generation enquiries

Connection Enquiries	Number 2024-2025	
Embedded Generator Connection Enquiries >30kW Low Voltage	761	
Embedded Generator Connection Enquiries >30kW High Voltage	63	

11.2.4.2 Applications to connect received

Number of EG connection applications in 2024-25 are shown in Table 25.

Table 25: Embedded generation applications

Connection Applications	Number 2024-2025		
Embedded Generator Connection Applications – Micro EG 30kW or less	49,794		
Embedded Generator Connection Applications >30kW Low Voltage	475		
Embedded Generator Connection Applications >30kW High Voltage	24		

⁴⁸ Website: https://www.energex.com.au/our-services/connections/residential-and-commercial-connections/solar-connections-and-other-technologies/emergency-backstop-mechanism

11.2.4.3 Average time to complete connection

In 2024-25 the number of applications received and connected took an average time to complete as shown in Table 26.

Table 26: Embedded generator applications - average time to complete

Connection Applications	Average time to complete 2024-2025(Business Days)		
Embedded Generator Connection Applications – Micro EG 30kW or less	25		
Embedded Generator Connection Applications >30kW Low Voltage	148		
Embedded Generator Connection Applications >30kW High Voltage	234		

11.3 Battery Energy Storage Systems

The total number of BESS connected to Energex's network rose 43% in 2024-25 compared to the end of the previous year. Around 3.5% of all solar PV owners in SEQ have invested in a BESS. The Federal Government's Cheaper Home Batteries Program provides generous financial incentives to customers to install batteries and has accordingly boosted monthly BESS totals significantly (approx. 22,500 May to October) Our 2025 Queensland Household Energy Survey indicates that 24% of SEQ respondents who have heard of battery storage but haven't installed a system intend to do so within the next three years, a similar percentage as in the year before.

Energex continues to monitor influencing factors and technologies in the residential and commercial BESS market to evolve our relevant standards, safety, and connection requirements. We recognise the potential for BESS to provide network benefits (addressing peak and minimum demand and/or power quality issues) and customer benefits. However, we also recognise the barriers to effectively utilising this developing technology.

The number of BESS installations connected to the Energex network was approximately 21,900 as at June 2025. The average capacity of all BESS in residential premises continues to increase, reaching 14.0kWh, up from 12.2kWh one year before. Experience from BESS testing indicates there is opportunity for increased sophistication in the systems' operation that would increase the potential value to the network and customers. Improved market signals will also assist to stimulate these improvements.

Under our Local Network Battery Plan, we are deploying 4MW/8MWh batteries to HV networks alongside zone substations. We are also deploying a portfolio of <100kW/200kWh neighbourhood and community batteries to Low Voltage networks. Our batteries are connected in areas of high solar PV penetration and network risk to soak up excess PV generation then feed it back into the grid during peak demand periods to provide overall network benefits. The battery capacity will be shared with a retailer for trading on the National Electricity Market. This approach is a cost-effective and equitable way to maximise the benefits of energy storage for all customers, retailers, and networks.

11.4 Electric vehicles

The charging of PHEV and battery electric vehicles (BEV), collectively termed EVs, is an emerging electrical load that will inevitably impact the LV electricity network. EV numbers are forecast to surge in Queensland as their purchase prices decrease, model availability increases, and more charging infrastructure is deployed.

Network challenges and opportunities

The growth in EV numbers also presents opportunities to collaborate with relevant stakeholders to create optimal private and public charging solutions based on the affordability and convenience priorities of private and commercial EV owners. If EV owners charge their vehicles outside network peak demand periods and ideally inside peak solar PV generation periods, this will enhance network utilisation, reduce customer charging costs in many cases, and deliver significant benefits to our business and other stakeholders. As the proportion of electricity entering the grid from renewable energy sources increases, the greenhouse gas emissions intensity of grid-supplied electricity reduces. This creates an environmental advantage for EVs over petrol-fuelled and diesel-fuelled vehicles.

During 2024-25, the number of EVs registered in Queensland increased by 51% to almost 78,000 vehicles, plus 1,800 electric motorcycles. Almost 90% of EVs registered in Queensland are in SEQ, despite the region having around 69% of the state's population. Although passenger EVs still only account for 2.3% of all registered cars in Queensland, 13.4% of cars sold in 2024-25 were EVs, up from 12.3% in 2023-24. There is no evidence that EV charging is overloading any local networks; however, we're preparing for future network impacts and seeking to reduce the incidence and overall effect.

Energex is playing its part in enabling EV ownership and optimal EV charging arrangements for residential and business customers to better understand and capitalise on EV charging. To help achieve this we developed the fourth edition of our <u>Network Electric Vehicles Tactical Plan</u>⁴⁹. The tactical plan outlines the key actions our network businesses are taking to prepare for EVs, including in these areas:

- EV-related data sourcing, use and sharing
- Network monitoring of EV clusters
- Connection standards and opportunities, especially related to public charging stations
- Bidirectional charging, including Vehicle to Grid
- EV Supply Equipment, or charger, connection compliance.

11.5 Dynamic connections

A dynamic connection is an innovative option that allows customers to export more of their excess solar generation. This supports ongoing renewable DER installations while ensuring a safe and reliable electricity network. As of 30 June 2025, 1,291 customers have taken up a Dynamic EG Connection. Our utility server facilitates secure communication between the network and compatible customer DER, conveying active constraints and export/import opportunities as Dynamic Operating Envelopes (DOE). This is a crucial capability to enable Dynamic Connections for the benefit of all customers. The focus now is collaborating with third-party Original Equipment Manufacturers to ensure their equipment is tested and certified to support this new customer offering.

To provide dynamic connections, the network has continued to develop DERMS. DERMS will be responsible for assessing and allocating network capacity, managing controlled loads, and issuing network support requests with contracted DER services.

Grid visibility plays a key role in maximising dynamic opportunities and work is ongoing with the gradual rollout of Distribution System State Estimation (DSSE). DSSE utilises available network model and telemetry data to form a complete and consistent real-time picture of the network's performance. In areas where network models or telemetry data is limited, an alternative and innovative approach called Model-Free Dynamic Operating Envelope is being tested on Low Voltage feeders using smart meter and network service monitor data. Further information can be obtained from Dynamic Connections Energex Website⁵⁰.

124

⁴⁹ Website: https://www.energex.com.au/manage-your-energy/smarter-energy/electric-vehicles-ev/our-ev-plan

⁵⁰ Website: https://www.energex.com.au/home/our-services/connections/residential-and-commercial-connections/solar-connections-and-other-technologies/dynamic-connections-for-energy-exports

11.6 Customer connections impacting system strength

The Australian Energy Market Commission (AEMC) added an additional DAPR reporting requirement in 2023 for connecting customers who could potentially impact (reduce) system strength. This provides the option of connecting customers making a financial contribution to the shared network to maintain system strength, rather than resolve system strength matters within their own network (i.e., behind the meter resolution). This approach creates more flexible options for the connecting customers in meeting system strength requirements.

This option became available in March 2023. There have not been any committed connections take up this offer.

11.7 Land and easement acquisition

One of the key difficulties for large community infrastructure projects is the ability to locate infrastructure over large distances and across several communities. Without the land and property acquired in advance, there can be no design, construction or connection of new electricity infrastructure or non-network solutions to meet the increasing electricity demands within a region.

Community expectations have risen recently by increased calls for input and participation into these projects, which Energex must now consider for future works. Energex must also ensure that statutory requirements are met regarding social, technical, and environmental disciplines to provide value for money.

Corridor easement acquisition projects often take more than five years and there is increasing evidence that further upfront community engagement, planning and investigation will improve the ability of Energex to construct these corridors.

The ability to obtain key land parcels, design resources and personnel far in advance of the actual project is a large risk. To ensure corridor projects are approved, a dedicated budget to address planning, community collaboration, education and investigation of various routes must occur. The selected corridor must satisfy customer requirements, statutory, key stakeholder, and community expectations. These objectives must be met whilst also satisfying Energex's obligation to our customers to provide value for money, meet key technical, environment and social requirements.

11.8 Impact of climate change on the network

We recognise that climate change presents one of the most significant challenges of our time. We have an important role to play in understanding and addressing climate related risks and opportunities associated with a changing climate and decarbonisation of our energy ecosystem. Climate Change is one of our Strategic Risks. Strategic risks are risks that affect the achievement of strategic and operational objectives detailed in our EQL Strategic Plan 2032.

A changing climate is leading to changes in the frequency and intensity of extreme weather and climate events including extreme temperatures, greater variations in floods & droughts, bushfires, tropical cyclones, heatwaves and storms. Energex is already experiencing the effects of climate change with a wide range of operational and asset-related impacts from extreme weather events. These impacts are expected to intensify in the future due to the increase in severity and frequency in extreme climate events. This will also be coupled with increasing impacts from chronic climate related risks associated with sustained climatic changes such as warmer climate and changing sea levels.

We are placing a growing focus on integrating climate change risk and sustainability considerations into our business decision-making to ensure we can sustainably deliver a safe, reliable, and affordable supply of energy to our customers and communities now and into the future.

We have been assessing climate-related risks and opportunities to Energex in preparation for the incoming Australian Accounting Standards Board (AASB) Sustainability Reporting Standards (which will be mandatory for the reporting year June 2026).

Network challenges and opportunities

Experts from across the organisation have collaborated to assess climate-related risks and opportunities, conducting surveys and workshops to determine Energex's priorities. We reviewed existing risks linked to climate change and decarbonisation, benchmarked against other energy sector organisations, and identified gaps to refine our strategic approach. These insights will shape our business planning and response frameworks, positioning us for compliance with the new Australian Sustainability Reporting Standards. This marks the beginning of an ongoing journey as we continue to evolve our processes and climate resilience strategies.

Energex supports EQL's <u>Environment and Cultural Heritage Policy</u>⁵¹ as it aligns with our commitment to responsible energy delivery and community stewardship. We recognise that protecting the environment and respecting cultural heritage are essential for building a sustainable future for Queensland

Energex proposes to address the impacts of climate change by the following measures:

- Keeping informed of changes in planning guidelines and construction standards
- Keeping aware of new storm surges and flood layers produced by councils and other agencies
- Undertaking surveillance and flood planning studies on network assets which are likely to be impacted by significant weather events, storm surges and flooding
- Undertaking network adaptations that assist in mitigating the risk of natural hazards
- Managing our greenhouse gas emission footprint
- Undertaking scenario analysis of climate risks
- Assessing the ability of our network to withstand increasing weather events and the impact on customer reliability.

⁵¹ Website: https://www.energyq.com.au/__data/assets/pdf_file/0004/836113/Environment-and-Cultural-Heritage-P058-691101.pdf

Chapter 12

Information, Communication and Operational Technology systems

- 12.1 Information and Communication Technology
- 12.2 Forward Information and Communication Technology program
- 12.3 Metering
- 12.4 Operational and future technology

12 Information, Communication and Operational Technology systems

12.1 Information and Communication Technology

12.1.1 Information and Communication Technology investments 2024-25

This section summarises the material investments Energex has made in the 2024-25 financial year, relating to Information & Communication Technology (ICT) systems.

Energy Queensland recognises ICT as a key enabler of efficient business operation, customer services and safety management and aligns its digital strategy to provide technology solutions which are secure, sustainable, and affordable. This is being achieved by prioritising the consolidation of digital solutions across the organisation. The key focus areas for the year include:

- The implementation of enterprise asset management (EAM) capability for Fleet Management processes that enable the management of EQL's vehicles through their lifecycle (procure, plan, operate, maintain & dispose)
- Consolidation of supply chain inventory and warehouse management processes into a modern technology suite
- Ongoing protection of the security of the digital network through improving Cyber Security maturity
- Investment in ICT core Infrastructure to ensure EQL's ICT assets, networks and platforms are reliable

In addition to the core delivery program, there were a number of tactical investments commenced or completed to ensure the ongoing stability of Energy Queensland's suite of digital capability and infrastructure.

Table 27 contains a summary of Energex's ICT investments undertaken in 2024-25. These include projects which commenced prior to this year and investments not completed by 30 June 2025. Further information on the scope of each initiative can be noted below.

Table 27: ICT investments 2024-25

Description	Cost \$M actual		
Asset and works management	\$4.56M		
Distribution network operations	\$5.16M		
Customer and market systems	\$9.87M		
Corporate systems	\$19.73M		
ICT management systems, productivity, and cybersecurity	\$7.75M		
Infrastructure program	\$14.29M		
Minor applications change and compliance	\$2.70M		
Total	\$64.06M		

Note: Actual costs represent investment of the ICT managed CAPEX PoW for Energex only and does not include ICT investment funded through other portfolios already identified in other sections of this report.

12.1.2 Asset and Works Management

The Asset and Works Management (AWM) stream is delivering integrated functionality to help Energex manage its asset investment portfolio and integrated Program of Work (PoW). This includes maintenance planning, scheduling, and delivery of all types of work in the field critical to the reliability and safety of the electricity network.

The program has been focussed on implementation for Energex Fleet Management business. During 2024-25 the major outcome was the provision of a centralised system to support end-to-end Fleet asset lifecycle and cost management, that improved visibility and transparency of equipment status statewide and resource balancing, resulting in improved management of safety, compliance and performance through improved process, data and analytics.

The building of integrations across the spatial systems are in progress to address data backlog, data errors and remove the requirement for manual data entry across Geographic Information Systems (GIS).

12.1.3 Distribution network operations

The Network Operation Control systems provide the technology to better connect our people, technology, and data to manage the distribution of electricity for customers. Planning that occurred in the previous period has been leveraged to deliver a consolidated, proven, and modernised platform with consistent business processes for Energy Queensland. This has allowed teams to support each other seamlessly and maximise business continuity in times of significant events anywhere in Queensland and represents a significant transformation from the out-dated, manual processes previously in place.

The key outcome in in 2024-25 was the delivery of a SCADA enabled Network Management System providing EQL with a single digital platform for all regions and seamless inter-operability between all Operational Control Centres. Additionally, the planning phase is in progress to unify the network Outage and Application Management Systems (OAMS) which will allow Network Operations teams to manage faults and customer calls using a contemporary system with improved business processes and platforms.

12.1.4 Customer and market systems

Customer and Market Systems include the digital applications, tools, and data stores to support Energex market compliance, customer and stakeholder management functions in areas including contact centre services, customer information management, meter data management and retailer invoices and remittance management and are critical systems in supporting Energex with fulfilling its market obligations.

Existing systems are ageing, not keeping up with technology advances and cyber threats and in some cases no longer supported by vendors. Delivery of modern Customer Relationship Management (CRM) and portal technology was progressed during 2024-25, and customer and market systems continue to remain compliant. Planning for replacement of other core components has commenced.

12.1.5 Corporate systems

Energex's core Enterprise Resource Planning (ERP) system reached both technical and financial obsolescence in mid-2015. Renewal of the ERP systems with contemporary systems commenced late in the previous regulatory period and is continuing in the current period.

Energex invested in several initiatives to upgrade and enhance core digital systems. The Supply Chain Management (SCM) project will transition inventory and warehouse management processes to a modern technology suite.

Information, Communication and Operational Technology systems

Energex's financial performance and analysis functions have been transformed with enhanced data integration, streamlined processes and improved reporting capability, thereby providing greater insights and management of the organisation financial sustainability.

Simplifying how we manage core systems, the SAP Rise Project has enhanced security, boosted efficiency and supported future growth. By streamlining and optimising operations, the SAP Rise Project ensures Energex is ready for evolving business needs with greater flexibility and reliability via a secure, platform to support key systems.

12.1.6 ICT management systems, productivity, and cyber security

Energy Queensland operates in one of the most-commonly targeted sectors for cyber-attacks. As these threats continue to evolve, reaching into industrial control systems and supply chains, it requires even greater efforts to manage risk. EQL has some specific cyber risk factors relating to the convergence of Information Technology and Operations Technology, and the strategic importance of critical infrastructure.

In 2024–25, the Cyber Uplift Program (CUP) delivered a targeted suite of initiatives aimed at strengthening EQL identity and access management. User Access Reviews (UARs) were conducted to ensure individuals retained only the access necessary for their roles, reducing the risk of excessive permissions and insider threats. Complementing this, Active Directory (AD) policies were uplifted to enforce stronger password standards and eliminate dormant or orphaned accounts, thereby tightening access controls across the organisation.

To further enhance access governance, CUP introduced automated processes for deprovisioning access when employees or contractors exit the organisation. This ensures timely removal of credentials and reduces the risk of lingering access to sensitive systems and data. Security controls within Entra ID were also strengthened, limiting privileged access and improving emergency access protocols. These measures collectively reinforce EQL's ability to manage identity securely and in alignment with best practices.

To support proactive threat management, EQL published its Cyber Threat Management Standard, establishing a consistent framework for identifying, assessing, and responding to cyber threats. Security monitoring tools were optimised, including the integration of automated threat analysis and ServiceNow for faster incident response. A Cyber Threat Intelligence Platform was implemented to centralise threat feed collection and enable proactive hunting of emerging risks, further strengthening EQL's cyber defence capabilities.

12.1.7 Infrastructure program

The renewal of Energex's ICT infrastructure assets is delivered in accordance with Energy Queensland's ICT Infrastructure Asset Renewal Guidelines. Digital infrastructure and technology software asset performance degrades due to age and technical obsolescence. To sustain capability an ongoing program is required to replace these assets. Assets covered by the program include Digital Fleet (desktops, laptops, mobile devices, and video conferencing equipment), corporate data network equipment, server storage infrastructure renewal and growth. The program also includes infrastructure software renewal of ICT technologies such as Exchange Email, integration technologies and database environments.

The Data Centre Consolidation (DCC) Project was established in 2022-23 to deliver on EQL's 2030 Strategy for greater adoption of cloud technologies. It is leveraging the opportunities offered by the cloud which support EQL's 'Electric Life' vision and is central to EQL's enablement as a digital utility. The Digital Strategy 2030 highlights the need for the adoption of cloud platforms in order to up-lift the 'Enterprise' capability domain and drive the 'Technology' operating model component ultimately reducing the number of data centres used by EQL from seven to three. Phase 2 of the program was completed in 2024-25.

12.1.8 Minor applications change and compliance

Investments to address safety and compliance during 2024-25 related to continuous improvement delivery business efficiencies through 40+ initiatives for field crews, operational teams, administrative functions, and via the development of safety and training apps.

12.2 Forward Information and Communication Technology program

As Energex looks toward the future, it will continue to ensure digital systems and capabilities are maintained for sustainability, cybersecurity, compliance, and operational safety. Continuing the inflight technology replacements and planning for additional improvement will also be leveraged to enable the company's planned productivity improvement.

Energy Queensland continues to be committed to the transformation program currently inflight, which is planned to be delivered across multiple years due to the scale and complexity involved in replacing several major systems in parallel. This approach has been agreed to realise efficiencies by reducing multiple integration activities that would have otherwise been required.

The key focus for future investment is based on delivery of the five-year plan that covers the new regulatory control period spanning FY 2026-2030. Our proposal continues to build upon the current transformation that has been ongoing in the current period, through:

- Continuously maintain our core Asset Works Management to support the increasing program
 of work and level of complexity of network and asset data
- Continuous maintenance of capabilities to modernise Energex customers' experience, by improving self-service options, and enhance and automate customer connection, applications and service delivery
- Continuous maturity of Cyber Security controls and systems to protect the operation of our distribution network, the confidentiality of customer information and the availability of critical business systems
- Continuously maintain capabilities to ensure fit for purpose Enterprise Resource Planning business capabilities for Finance, Human Resources, Payroll, Procurement, Safety, Governance and Risk Control and Records Management
- Continuous maintenance and incremental maturity of Data & Intelligence capabilities to address
 the needs of an evolving digital utility and energy industry, better serve our customer, and meet
 our regulatory reporting obligations
- Modernise, expand and integrate our digital capabilities for forecasting, modelling, tariff and pricing planning, grid planning and demand flexibility management
- Continuously maintain digital foundations to ensure they are secure, capable, stable and efficient for our business and customers

A high-level summary of potential Energex ICT investments for the distribution business for the forward ICT Program is shown in Table 28. Emerging priorities and new technologies will result in ongoing prioritisation and may require adjustments dependent on the determination received. Forecasts have been grouped by initiative names as included in the ICT Plan for 2026-30.

Table 28: ICT investments 2025-26 to 2029-30

Initiative Name	2025-26 \$M	2026-27 \$M	2027-28 \$M	2028-29 \$M	2029-30 \$M
Asset and Works Management	8.90	4.50	4.50	4.10	4.50
Customer Systems	17.80	13.10	10.50	9.90	8.30
Digital Core	8.10	10.20	4.80	3.50	10.20
Cyber Security	6.80	6.60	7.10	5.50	5.40
Data and Intelligence	7.90	4.90	3.20	0.80	0.60
Digital Foundations	15.10	12.60	11.90	9.90	11.80
Integrated Grid Planning	2.90	2.90	1.10	1.10	1.10
Minor Upgrades and Updates	8.00	4.70	4.20	2.40	3.50
Grand Total	66.6	55.0	42.7	33.2	40.8

Note: Forecasts include ICT Managed CAPEX investment for Energex Limited and does not include ICT investment funded through other portfolios already identified in other sections of this report. Forecasts reflect the proposed plan for the AER 2025-26 to 2029-30 regulatory period.

12.3 Metering

Energex is currently separating load control from metering, as it relates to network operation and network management. Energex plans will require that third-party metering providers retain the Energex load control assets installed in customer switchboards to maintain Energex considerable load control facilities.

Energex will seek to maximise the remaining value in existing meter stocks, by leveraging existing metering capabilities wherever possible. For example, the current suite of interval capable electronic meters may be reprogramed to support market offerings such as Time-of-Use (ToU) tariffs or other similar time-based pricing structures.

Energex will also continue to operate a Meter Asset Management Plan (MAMP) in a prudent and efficient manner to enable enhanced benefits and cost savings to customers.

Energex will continue to develop and implement consistent work practices and supporting standards, such as the QECM and Queensland Electrical Metering Manual, to ensure these align with the rollout of smart-ready meters in a contestable marketplace.

12.4 Operational and future technology

Energex is responsible for optimising the reliability, security, and utilisation performance of the regulated electricity assets to ensure that both regulatory and corporate performance outcomes are achieved in a manner that is safe to the workforce and the public. Traditional distribution networks are facing several challenges brought about by customer energy choices and the introduction of new technologies such as grid energy storage, private battery storage, solar PV, voltage regulation solutions and a multitude of specialised monitoring tools and devices. Energex recognises that these technologies play a key role in improving the utilisation, reliability, security, and performance of our regulated electricity assets.

12.4.1 Telecommunications

Energex has an extensive Telecommunications network to provide a robust, secure, and efficient communication infrastructure to support the monitoring, operation and maintenance of its power network. The Telecommunications network continues to evolve as new products are leveraged, new

Information, Communication and Operational Technology systems

solutions meet new requirements and solutions and infrastructure ages to a point where the risk of it remaining in service justifies removal.

Key projects / programs are detailed below:

- Protection running on Multi-Protocol Labelling Switching Internet Protocol (MPLS-IP) network.
 Pilot works are complete and now the deployments will be part of the various Asset Replacement works.
- Replacement of aged, poorly performing and end of supply/support Microwave equipment.
 Energex has recently seen higher than expected in service failure rate and end of supply/support notices for equipment currently used in its Microwave link fleet. Projects to replace this equipment have been brought forward to manage risk associated with in service failure of the equipment and to ensure that sparing for fail fix activities can be maintained.
- Replacement of obsolete equipment. Energex's existing operational telecommunications network is extensive and covers the majority of bulk and zone substations. The network includes various aging technologies including the PDH (Plesiochronous Digital Hierarchy) technology, with significant percentage of the equipment being 20+ years old with key items starting to show increasing in service failure rates. The older equipment is no longer supported by the original vendors and certain equipment does not have modern replacements available. The strategy is to eventually replace this technology with modern IP-MPLS noting that where performance of the fleet is still adequate then equipment will continue to be used to minimising costs to the electricity customers.
- In the meantime, the current systems must be supported whilst the migration to the IP-MPLS network is performed; the following lists some of the specific initiatives:
 - Access switch / router equipment replacement at substations replacement of specific equipment types that are experiencing high levels of in service faults in the switch fleet
 - Programs to replace obsolete comms site infrastructure, including, batteries, chargers, solar systems, P25 equipment, towers etc.
- Replacement of obsolete copper cable links. Much of the existing copper pilot cable network is
 over 40 years old and is reaching end of design life. The strategy is to replace with optical fibre
 cable where practical. However, this often requires the associated replacement of substation
 equipment such as feeder protection relays.
- Reliability Programs: Energex will implement improvements for the reliability of the network via the specific items listed below:
 - Replace unreliable third party infrastructure with internal comms solutions to improve availability
 - Replace equipment with hardened variants where performance has been less than required
- Digital Enablement. Improve productivity by implementing Wi-Fi capability at high value substation sites, noting that the program has been reduced in line with funding reductions.

12.4.2 Operational technology systems

Energex classifies Operation Technology (OT) as the systems, applications, and intelligent devices and their data that can directly or indirectly monitor, control, or protect the power network. Our OT strategies therefore include:

- Managing the technology environment independent of the underlying telecommunications environment, so that they can develop independently without impacting upon each other
- Separating the collection, storage, and governance of data functions from the users of the data so that users can focus on using and interpreting the data
- Centrally managing support and maintenance of intelligent electronic devices

Information, Communication and Operational Technology systems

 Developing greater security and resilience as part of the overall design, given the increased exposure to cyber and physical security threats.

Our forward program remains focused on the systems and infrastructure required to collect, manage, and control data for asset management purposes, as well as to provide for remote monitoring and operation of the power network. Our ongoing mandate is to ensure a standards-based approach to all future and current operational systems and devices on the network, including the interactions between them.

The current systems within the OT scope are detailed below.

12.4.2.1 Supervisory Control and Data Acquisition (SCADA)

The in-house developed Energex Remote Terminal Units (RTUs) at substations are a critical component for substation operations in the SEQ region, with approximately 400 units in service. Given the age of this fleet, hardware obsolescence issues are forcing the need for EQL to identify and implement a hardware and software refresh for the platform to securely extend their operating life.

Work has therefore begun to establish cost effective and no-regret options to ensure that the units can continue to play a supporting role until the new common EQL RTU platform can be fully rolled out over the next ten years.

At the same time, work is continuing to allow the new EQL standard RTU platforms to suitably integrate into the current environment. This includes standardised integration of substation battery systems, customer DER and enabling Dynamic Operating Envelopes (DOE) that will ultimately be optimised by the DERMS for maximum customer and network benefit (see Intelligent Grid Enablement section below).

The need for greater integration of substation secondary systems, including protection, SCADA, and telecommunications facilities has continued. Energex continues to evolve the solutions to enable the following advanced features to be deployed into the network:

- Protection relay interfacing with SCADA via Ethernet-IP based communications
- Migration of auto-reclose functions from Substation Automation Control System to protection relay to enable additional operational modes to provide improved safety of live line workers.

Energex is continuing the migration to Ethernet-IP based communications for a range of substation secondary systems devices including protection, SCADA, and telecommunications facilities.

12.4.2.2 Support for network battery projects.

Energex is currently installing a number of Distribution connected batteries and new communications and SCADA solutions have been developed and deployed to support these installations.

12.4.2.3 Other changes

Energex continued the deployment of the Common Operational Technology Environment (OTE) at operational Data Centres. The following work was undertaken:

- Continued with provisioning / expanding the common OT environment to allow the deployment
 of a range of different systems including expanding the common Distribution Management
 System (DMS) and operator consoles for Energex and Ergon Energy
- Migration of services from the legacy environments into the Common OT environment
- Continued replacement of various end of life components within the Data Centres, including the firewalls, switch infrastructure, monitoring systems, SANs (Storage Area Networks), and backup systems.

12.4.2.4 Operational security

Energex recognises the importance of cyber security for the power network and its users and continues to invest in the security standard of all operational systems. It is continuing to refine its operational security to mitigate current and future threats. It is continuing to renew aging security and support infrastructure in its Operational Technology Environment and migrating to a common security philosophy and implementation with Ergon Energy. This is moving Energex and Ergon Energy to a secure combined Operational Technologies environment. Additional threats were identified during the period and a range of mitigation activities is occurring. This included projects initiated to strengthen cybersecurity capability in the Operational Technology environments. These covered areas such as identity and access management, specifically IGA (Identity Governance and Administration), Threat and Vulnerability Management systems to identify assets and their vulnerabilities, privileged access management systems to improve controls, monitoring and protection of privileged accounts.

12.4.2.5 Intelligent grid enablement

Energex is investing in the development of a smarter network for the future. The growth of DER and Customer Energy Resources in distribution networks, including EVs, requires Energex to consider new technology approaches for maximising hosting capacity through existing network assets.

In order to deliver sustainable outcomes for the network and choice for customers, Energex is delivering several significant intelligent grid capabilities that build on previous foundational initiatives:

- The Telemetry Hub is an internal collection of systems that integrate, store, process and visualise the diverse and increasing streams of telemetered data from the electrical network and other sources in a common format for consumption by multiple end use cases. These technologies have now been expanded into the operational environment, introducing support for modern message bus and queuing technologies.
- Distribution System State Estimation (DSSE) Energex continued the roll out of modelling and visibility components for estimating the most probable electrical state of a network without the need for measurement data at every point. DSSE provides complete network visibility at any point in time using available data and can dramatically reduce the capital and operation cost of deploying physical monitors to the network.
- Distributed Energy Resources Management System (DERMS) Similar to the existing
 Distribution Management System (DMS), the DERMS platform is being developed as a
 dedicated head end system to interact and optimise the use of Dynamic Operating Envelopes
 (DOE), customer DER programs and existing Audio Frequency Load Control (AFLC)
 infrastructure. It is envisioned to run with a high degree of autonomy with manual intervention
 by exception. The first tranche of functionality has been developed and is currently under test,
 with an expectation to be placed into production in 2026.
- Advanced smart meter analytics Energex continues its investment in third party platforms to
 make use of increasing smart meter data for customers and network benefit. The platforms
 accept raw power quality and energy data from smart meters and other grid visibility sources
 to build bottom-up visibility of the network and highlight potential issues, ranging from safety
 concerns to hosting capacity limits and opportunities.

12.4.2.6 Low Voltage network safety monitoring program

Safety by design is fundamental to Energex's network strategy, providing safe and reliable electricity to residents and businesses across SEQ and is at the core of Energex's corporate values. Neutral integrity failures on the LV networks are a significant cause of customer safety incidents. Energex is committed to customer safety imperatives and considers that the detection of neutral integrity failures is critical to mitigating customer safety risks. Energex is investing in deploying a smart network monitoring device with neutral integrity monitoring capability which will be installed under a dedicated safety program on selected customer premises throughout Queensland. The scope provides for gathering of field data, through purpose-built sensors and/or through smart meters, derivation of information from the field data,

Information, Communication and Operational Technology systems

and detection and raising of alerts for neutral integrity failures in the Energex network and/or in customer installations.

Energex is currently reviewing the ongoing methodology to be able to provide this service in light of rollout of smart metering within Queensland and is piloting the use of the data produced from customer meters to perform this same function.

12.4.3 Operational technology investments in 2024-25

Table 29 summarises the operational technology investments for 2024-25.

Table 29: Operational technology investments 2024-25

Project	Direct Cost \$M actual	
Telecommunications Network		
Telecommunications equipment replacement	\$3.57	
MPLS system implementation	\$0.57	
Fibre Cable installation	\$1.19	
Operational Systems		
Operator Console Replacement	\$0.17	
Common OTE	\$2.47	
OT Security projects	\$3.54	
SCADA and Automation Refurbishment / Replacement	\$0.25	
SCADA and Automation Enhancement	\$0.85	
LV Network Safety Monitoring Program	\$5.30	
Intelligent Grid Enablement	\$2.57	
Total	\$20.48	

Note: All financials presented in this document are correct at the time of writing and represent the existing organisational accounting treatment, which may be subject to change. Forecasted data is subject to ongoing variation. Energy Queensland is finalising the alignment of its Cost Allocation Methodology between Ergon Energy and Energex, potentially impacting the treatment of some capital and operational project costs.

12.4.4 Planned operational technology investments for 2025-26 to 2029-30

Table 30 summarises Energex OTE and associated telecommunication planned investments for the 2025-26 to 2029-30 period.

Table 30: Operational technology planned investments 2025-26 to 2029-30

Project	Direct Cost (\$M planned)
Telecommunications Network	
Telecommunications equipment replacement	\$27.07
MPLS system implementation	\$0.96
Fibre Cable installation	\$7.20
Comms Network Enhancements	\$3.05
Operational Systems	
Common OTE	\$12.56
OT Security Projects	\$22.82
Operator Console Replacement	\$6.12
SCADA and Automation Enhancement	\$16.92
SCADA and Automation Refurbishment / Replacement	\$0.49
LV Network Safety Monitoring Program	\$6.94
Intelligent Grid Enablement	\$7.44
Total	\$111.57

Note: All financials presented in this document are correct at the time of writing and represent the existing organisational accounting treatment, which may be subject to change. Forecasted data is subject to ongoing variation. Energy Queensland is finalising the alignment of its Cost Allocation Methodology between Ergon Energy and Energex, potentially impacting the treatment of some capital and operational project costs.

Appendix A

Terms and definitions

Appendix A Terms and definitions

Table 31: Terms and definitions

- Case C Come and domination			
Term/ Acronym	Definition		
10PoE Forecast Load	Peak load forecast with 10% probability of being exceeded in any year (i.e., a forecast likely to be exceeded only once every 10 years), based on normal expected growth rates and temperature corrected starting loads.		
50PoE Forecast Load	Peak load forecast with 50% probability of being exceeded in any year (i.e., an upper range forecast likely to be exceeded only once every two years), based on normal expected growth rates and temperature corrected starting loads.		
2HEC	Two Hour Emergency Capacity (of all equipment excluding the largest parallel element)		
AASB	Australian Accounting Standards Board		
ABS	Australian Bureau of Statistics		
AC / ac	Alternating Current		
ACR	Automatic Circuit Recloser: an integrated fault break switch and control system (including protection trip and reclose) suitable for pole mounting.		
ACS	Alternative Control Services: a distribution service provided by Energex that the AER has classified as an Alternative Control Service under the NER. Includes fee-based services, quoted services, Public Lighting Services and Default Metering Services.		
ACSR	Aluminium Conductor Steel Reinforced		
AD	Authorised Demand or Active Directory		
ADRP	Aggregated Demand Response Program		
AEMC	Australian Energy Market Commission		
AEMO	Australian Energy Market Operator		
AER	Australian Energy Regulator		
AFLC	Audio Frequency Load Control: a method of switching loads by modulating audio frequency signals transmitted over the powerline.		
AS	Australian Standard		
AWM	Asset and Works Management		
BESS	Battery Energy Storage Systems		
BEV	Battery Electric Vehicles		
ВОМ	Bureau of Meteorology		
Bus/es	A common connection point in a network substation or switchyard		
Busbar			
BSP	Bulk Supply Point		
BSS	Bulk Supply Substation is a substation that converts energy from transmission voltages to sub-transmission voltages to sub-transmission voltages. Note: A Bulk Supply Substation is not a Transmission Connection Point if Energex owns the incoming 'transmission voltage' feeder. Refer to definition of 'TCP' and 'Transmission Network' below for further explanation.		

Capacitor Bank (Shunt Capacitor) CATS Consumer Administration and Transfer Solution CECV Customer Export Curtailment Value CER Consumer Export Curtailment Value Cere Capital Expenditure Circuit Breaker (CB) A mechanical switch device capable of making, carrying, and breaking currents under normal circuit conditions as well as making, carrying for a specified time, and breaking currents under specified abnormal conditions, such as those of short circuit. CBD Central Business District CBEMA Computer and Business Equipment Manufacturers' Association CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CUST CUSTOMER Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Annual Planning Report DCC Data Centre Consolidation DCC Data Centre Consolidation DCC Data Centre Consolidation DER Distributed Energy Resource Management System DISTRIBUTION Annual Planning Report DA Distributed Energy Resource Management System DMA Distribution Management DMA Demand Management DMA Demand Management DMA Demand Management Incentive Allowance Mechanism DMA Distribution Management Incentive Allowance Mechanism DMA Distribution Management Incentive Allowance Mechanism DMA Distribution Network Service Provider DOE DOPAR Dorant Project Assessment Report DRED DPAR Draft Project Assessment Report DRED Demand Response Enabling Device	Term/ Acronym	Definition
CECV Customer Export Curtallment Value CER Consumer Energy Resources C&I Commercial and Industrial – Customer classification CAPEX Capital Expenditure Circuit Breaker (CB) A mechanical switch device capable of making, carrying, and breaking currents under normal circuit conditions as well as making, carrying for a specified time, and breaking currents under specified abnormal conditions, such as those of short circuit. CBD Central Business District CBEMA Computer and Business Equipment Manufacturers' Association CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distributed Energy Resources DERMS Distributed Energy Resources DERMS Distribution Connected Units DER Distribution Connected Units DER Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Management Incentive Allowance Mechanism DMA Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	•	as switching equipment, protective equipment, and controls, required for a
CER Consumer Energy Resources C&I Commercial and Industrial – Customer classification CAPEX Capital Expenditure Circuit Breaker (CB) A mechanical switch device capable of making, carrying, and breaking currents under normal circuit conditions as well as making, carrying for a specified time, and breaking currents under specified abnormal conditions, such as those of short circuit. CBD Central Business District CBEMA Computer and Business Equipment Manufacturers' Association CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CATS	Consumer Administration and Transfer Solution
C&I Commercial and Industrial – Customer classification CAPEX Capital Expenditure Circuit Breaker (CB) A mechanical switch device capable of making, carrying, and breaking currents under normal circuit conditions as well as making, carrying for a specified time, and breaking currents under specified abnormal conditions, such as those of short circuit. CBD Central Business District CBEMA Computer and Business Equipment Manufacturers' Association CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Relationship Management CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Management Incentive Allowance Mechanism DMA Distribution Management Incentive Allowance Mechanism DMA Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CECV	Customer Export Curtailment Value
CAPEX Capital Expenditure Circuit Breaker (CB) A mechanical switch device capable of making, carrying, and breaking currents under normal circuit conditions as well as making, carrying for a specified time, and breaking currents under specified abnormal conditions, such as those of short circuit. CBD Central Business District CBEMA Computer and Business Equipment Manufacturers' Association CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Relationship Management CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Management Incentive Allowance Mechanism DMA Distribution Management Incentive Allowance Mechanism DMA Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CER	Consumer Energy Resources
Circuit Breaker (CB) A mechanical switch device capable of making, carrying, and breaking currents under normal circuit conditions as well as making, carrying for a specified time, and breaking currents under specified abnormal conditions, such as those of short circuit. CBD Central Business District CBEMA Computer and Business Equipment Manufacturers' Association CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	C&I	Commercial and Industrial – Customer classification
currents under normal circuit conditions as well as making, carrying for a specified time, and breaking currents under specified abnormal conditions, such as those of short circuit. CBD Central Business District CBEMA Computer and Business Equipment Manufacturers' Association CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CAPEX	Capital Expenditure
CBEMA Computer and Business Equipment Manufacturers' Association CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	Circuit Breaker (CB)	currents under normal circuit conditions as well as making, carrying for a specified time, and breaking currents under specified abnormal conditions,
CBRM Condition Based Risk Management CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CBD	Central Business District
CIS Customer Information System Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CBEMA	Computer and Business Equipment Manufacturers' Association
Code Electricity Distribution Network Code CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Management System DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CBRM	Condition Based Risk Management
CONSAC Concentric Neutral Solid Aluminium Conductor CRI Community Regard Index CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Management System DMS Distribution Management System DMS Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CIS	Customer Information System
CRI Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distributed Energy Resources DERM Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	Code	Electricity Distribution Network Code
CRM Customer Relationship Management CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CONSAC	Concentric Neutral Solid Aluminium Conductor
CSAT Customer Satisfaction CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CRI	Community Regard Index
CUP Cyber Uplift Program CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CRM	Customer Relationship Management
CVT Capacitor Voltage Transformer DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CSAT	Customer Satisfaction
DA Distribution Authority DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CUP	Cyber Uplift Program
DAPR Distribution Annual Planning Report DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	CVT	Capacitor Voltage Transformer
DCC Data Centre Consolidation DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DA	Distribution Authority
DCU Distribution Connected Units DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DAPR	Distribution Annual Planning Report
DER Distributed Energy Resources DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DCC	Data Centre Consolidation
DERMS Distributed Energy Resource Management System DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DCU	Distribution Connected Units
DGA Dissolved Gas Analysis Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DER	Distributed Energy Resources
Distribution customer A connected customer with an NMI status of active or de-energised DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DERMS	Distributed Energy Resource Management System
DM Demand Management DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DGA	Dissolved Gas Analysis
DMIAM Demand Management Incentive Allowance Mechanism DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	Distribution customer	A connected customer with an NMI status of active or de-energised
DMA Distribution Monitoring Analytics DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DM	Demand Management
DMS Distribution Management System DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DMIAM	Demand Management Incentive Allowance Mechanism
DNSP Distribution Network Service Provider DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DMA	Distribution Monitoring Analytics
DOE Dynamic Operating Envelopes DPAR Draft Project Assessment Report	DMS	Distribution Management System
DPAR Draft Project Assessment Report	DNSP	Distribution Network Service Provider
	DOE	Dynamic Operating Envelopes
DRED Demand Response Enabling Device	DPAR	Draft Project Assessment Report
	DRED	Demand Response Enabling Device

Term/ Acronym	Definition
DSO	Distribution System Operator
DSSE	Distribution System State Estimation
EAM	Enterprise Asset Management
ECC	Emergency Cyclic Capacity (for a substation this is the maximum cyclic rating of all equipment excluding the largest, resulting in an accelerated but acceptable rate of wear)
EDNC	Electricity Distribution Network Code
EG	Embedded Generation
EMF	Electro-Magnetic Fields
ENCAP	Electricity Network Capital Program Review 2011
EPBC	Environment Protection and Biodiversity Conservation Act
ERP	Enterprise Resource Planning
ESO	Electrical Safety Office
EV	Electric Vehicle
EQL	Energy Queensland Limited
Feeder	Power line that can be any nominal voltage, overhead or underground.
FFA	Field Force Automation
FIT	Feed in Tariff/s
FPAR	Final Project Assessment Report
GIS	Geographical Information System or Gas Insulated Switchgear
GOC	Government Owned Corporation
GSD	Generation Signalling Device
GSL	Guaranteed Service Level
GSP	Gross State Product
HCs	Hazard Controls
HEV	Hybrid Electric Vehicle
HI	Health Index
HSE MS	Health, Safety and Environment Management System
HV	High Voltage – alternating current voltage above 1,000 volts
IAM	Identity Access Management
ICT	Information and Communication Technology
IEC	International Electro-Technical Commission
IMS	Integrated Management Systems
IP/MPLS	Internet Protocol / Multi-Protocol Label Switching
IRC	Investment Review Committee
ISO	International Organisation for Standardisation
IT	Information Technology
kV	Kilovolt or 1,000 volts

Term/ Acronym	Definition
kVA	Kilovolt Ampere unit of power
LAR	Load at Risk
LARc	Load at Risk under Contingent Condition
LARn	Load at Risk under System Normal Condition
LCC	Large Customer Connection
LDC	Line Drop Compensation
LiDAR	Light Detection and Ranging. A remote sensing technology that measures distance by illuminating a target with a laser and analysing the reflected light.
LV	Low Voltage (alternating current voltage above 50 volts and not exceeding 1,000 volts)
LVR	Low Voltage Regulators
MAB	Metering Asset Base
MAIFI	Momentary Average Interruptions Frequency Index
MAIFIe	Momentary Average Interruptions Frequency Index by Event
MAMP	Meter Asset Management Plan
MAR	Marginally At Risk
MoU	Memorandum of Understanding
MPLS-IP	Multi-Protocol Labelling Switching – Internet Protocol
MSS	Minimum Service Standard
MW	Mega-Watt unit of real power
MVA	Mega-Volt Ampere unit of power
MVAr	Mega-Volt Ampere Reactive unit of reactive power
N-1	Security Standard where supply is maintained following a single credible contingency event
NCC	Normal Cyclic Capacity (for a substation this is the maximum cyclic rating of all parallel equipment resulting in a normal rate of wear)
NECF	National Energy Customer Framework
NEL	National Electricity Law
NEM	National Electricity Market
NEO	National Electricity Objective
NER	National Electricity Rules
NERR	National Energy Retail Rules
NIEIR	National Institute of Economic and Industry Research
NIM	Net Interstate Migration
NOM	Net Overseas Migration
NPV	Net Present Value
NPWG	Network Pricing Working Group
NSA	Network Support Agreement
NSP	Network Service Provider

Term/ Acronym	Definition
NTS	Net Trust Score
NVD	Neutral Voltage Displacement
OAMS	Outage and Application Management Systems
OLTC	On Load Tap Changer
OPEX	Operating Expenditure
ОТ	Operational Technology
OTE	Operational Technology Environment
P1	Priority 1
P2	Priority 2
PAR	Project Approval Report
PDH	Plesiochronous Digital Hierarchy
PHEV	Plug-in Hybrid Electric Vehicle
PoE	Probability of Exceedance
POPS	Plant Overload Protection System
PoW	Program of Work
p.u	Per-unit measure
PV	Photo Voltaic
QECM	Queensland Electricity Connection Manual
QGSO	Queensland Government Statisticians Office
QHES	Queensland Household Energy Survey
QoS	Quality of Supply
RAB	Regulated Asset Base
RDC	Remote Data Concentrators
RFP	Request for Proposal
RIO	Regulatory Information Order
RIT-D	Regulatory Investment Test for Distribution
RIT-T	Regulatory Investment Test for Transmission
RMS	Root Mean Square
RMU	Ring Main Unit
RRG	Reset Reference Group
RTU	Remote Terminal Unit
Rules	National Electricity Rules
SA2	Statistical Area Level 2
SAC	Standard Asset Customers
SAIDI	System Average Interruption Duration Index. (Performance measure of network reliability, indicating the total minutes, on average, that customers are without electricity during the relevant period)

Term/ Acronym	Definition
SAIFI	System Average Interruption Frequency Index. (Performance measure of network reliability, indicating the average number of occasions each customer is interrupted during the relevant period)
SAPS	Stand-Alone Power Systems
SAMP	Strategic Asset Management Plan
SCM	Supply Chain Management
SCS	Standard Control Services
SEQ	South-East Queensland
SF6	Sulphur Hexafluoride
SCADA	Supervisory Control and Data Acquisition
SIFT	Substation Investment Forecast Tool
SME	Subject Matter Expert
SPI	Service Performance Index
Statcom	Static synchronous compensator
STOC	SCADA & Telecommunications Operational Centre
STPIS	Service Target Performance Incentive Scheme
THD	Total Harmonic Distortion
TMU	Target Maximum Utilisation
TNSP	Transmission Network Service Provider
ToU	Time-of-Use
UAR	User Access Reviews
UCC	Unified Communication and Collaboration
UFLS	Under Frequency Loading Shedding
V	Volt or volts
VCR	Value of Customer Reliability
VNR	Value of Network Resilience
VPP	Virtual Power Plants
VVR	Volt Var Regulation
V2G	Vehicle to Grid
WPF	Worst Performing Feeder
XLPE	Cross-Linked Polyethylene
Zone Substation (ZS) or (ZSS)	A substation that converts energy from transmission or sub-transmission voltages to distribution voltages.

Appendix B

National Electricity Rules and Distribution Authority cross reference

Appendix B National Electricity Rules and Distribution Authority cross reference

Table 32: NER cross reference

Claus For t	NER Schedule 5.8 version 235 Clause / Sub-Clause For the purposes of clause 5.13.2(c) of the NER, the			
	following information must be included in a Distribution Annual Planning Report:			
(a) in	formation regarding the DNSP and its network inclu	ding:		
(1)	a description of its network	1.2 Network overview2.2 Electricity distribution network5.4.3 Safety		
(2)	a description of its operating environment	 1.2 Network overview 2.2 Electricity distribution network 2.3 Network operating environment 2.3.3 Public safety 9.1 Reliability measures and standards 9.2 Service Target Performance Incentive Scheme (STPIS) 9.3 High impact weather events 10.1 Power quality supply standards, codes and guidelines 11 Network challenges and opportunities 		
(3)	the number and types of its distribution assets	2.2 Electricity distribution network		
(4)	methodologies used in preparing the Distribution Annual Planning Report, including methodologies used to identify system limitations and any assumptions applied; and	 5.2 Planning methodology 5.4 Network planning criteria 5.5 Plant thermal ratings 5.6 Voltage limits 5.7 Fault levels 5.11 Network planning – assessing system limitations Appendix D Substation forecast and capacity tables Appendix E Feeder forecast and capacity tables 		
(5)	analysis and explanation of any aspects of forecasts and information provided in the Distribution Annual Planning Report that have changed significantly from previous forecasts and information provided in the preceding year;	1.5 Changes from previous year's DAPR		
(b) forecasts for the forward planning period, including at least:				

	Schedule 5.8 version 235	Report Section			
Clause / Sub-Clause For the purposes of clause 5.12.2(c) of the NEP, the					
follo	For the purposes of clause 5.13.2(c) of the NER, the following information must be included in a Distribution Annual Planning Report:				
(1)	a description of the forecasting methodology use sources of input information, and the assumptio applied;				
(2)	load forecasts (i) at the transmission-distribution connection points; (ii) for sub-transmission lines; and (iii) for zone substations, including, where applicable, for each item specified above: (iv) total capacity; (v) firm delivery capacity for summer periods anwinter periods; (vi) peak load (summer or winter and an estimate of the number of hours per year that 95% of peak load is expected to be reached); (vii) power factor at time of peak load; (viii) load transfer capacities; and (ix) generation capacity of known distribution connected units;	Appendix E Feeder forecast and capacity tables			
(2A)	forecast use of distribution services by distribution connected units: (i) at the transmission-distribution connection points; (ii) for sub-transmission lines; and (iii) for zone substations, including, where applicable, for each item specified above: (iv) total capacity to accept supply from distribution connected units; (v) firm delivery capacity for each period during the year; (vi) peak supply into the distribution network from distribution connected units (at any time during the year) and an estimate of the number of hours per year that 95% of the peak is expected to be reached; and (vii) power factor at time of peak supply into the distribution network				
(3)	forecasts of future transmission-distribution connection points (and any associated connection assets), sub-transmission lines and zone substations, including for each future transmission-distribution (i) location; (ii) future loading level; and	 6.1 Network limitations – adequacy, security, and asset condition 6.5 Emerging network limitations maps Appendix C Network limitations and mitigation strategies 			

NER	Schedule 5.8 version 235	Report Section		
Claus	Clause / Sub-Clause			
follo	For the purposes of clause 5.13.2(c) of the NER, the following information must be included in a Distribution Annual Planning Report:			
	(iii) proposed commissioning time (estimate of month and year);	Appendix D Substation forecast and capacity tables		
		Appendix E Feeder forecast and capacity tables		
(4)	forecasts of the Distribution Network Service Provider's performance against any reliability targets in a service target performance incentive scheme; and	9.2 Service Target Performance Incentive Scheme (STPIS)		
(5)	a description of any factors that may have a material impact on its network, including factors affecting;(i) fault levels;	5.7 Fault levels5.6 Voltage limits6.1.3 Network asset retirements and		
	(ii) voltage levels;	deratings		
	(iii) other power system security requirements;(iv) the quality of supply to other Network Users (where relevant); and	9.3 High impact weather events9.1.4 Reliability corrective actions		
	(v) ageing and potentially unreliable assets;	10.2 Power quality performance 2024-25		
		11 Network challenges and opportunities		
(b1)	for all network asset retirements, and for all network asset de-ratings that would result in a system limitation, that are planned over the forward planning period, the following information in sufficient detail relative to the size or significance of the asset:	6.1.3 Network asset retirements and deratingsAppendix C Network limitations and mitigation strategies		
	a description of the network asset, including location;			
	the reasons, including methodologies and assumptions used by the Distribution Network Service Provider, for deciding that it is necessary or prudent for the network asset to be retired or de-rated, taking into account factors such as the condition of the network asset;			
	 the date from which the Distribution Network Service Provider proposes that the network asset will be retired or de-rated; and 			
	4) if the date to retire or de-rate the network asset has changed since the previous Distribution Annual Planning Report, an explanation of why this has occurred;			
(b2)	for the purposes of subparagraph (b1) , where two or more network assets are:	6.1.3 Network asset retirements and deratings		
	 of the same type; to be retired or de-rated across more than one location; 	Appendix C Network limitations and mitigation strategies		
	 to be retired or de-rated in the same calendar year; and 			

NER Schedule 5.8 version 235

Report Section

Clause / Sub-Clause

For the purposes of clause 5.13.2(c) of the NER, the following information must be included in a Distribution Annual Planning Report:

4) each expected to have a replacement cost less than \$200,000 (as varied by a cost threshold determination),

those assets can be reported together by setting out in the Distribution Annual Planning Report:

- a description of the network assets, including a summarised description of their locations;
- 6) the reasons, including methodologies and assumptions used by the Distribution Network Service Provider, for deciding that it is necessary or prudent for the network assets to be retired or de-rated, taking into account factors such as the condition of the network assets;
- the date from which the Distribution Network Service Provider proposes that the network assets will be retired or de-rated; and
- 8) if the calendar year to retire or de-rate the network assets has changed since the previous Distribution Annual Planning Report, an explanation of why this has occurred;

(c) information on system limitations for sub-transmission lines and zone substations, including at least:

- estimates of the location and timing (month(s) and year) of the system limitation;
- analysis of any potential for load transfer capacity between supply points that may decrease the impact of the system limitation or defer the requirement for investment;
- impact of the system limitation if any, on the capacity at transmission-distribution connection points;
- a brief discussion of the types of potential solutions that may address the system limitation in the forward planning period, if a solution is required; and
- where an estimated change in forecast load or forecast generation from distribution connected units would defer a forecast system limitation for a period of at least 12 months, include:
 - (i) an estimate of the month and year in which a system limitation is forecast to occur as required under subparagraph (1);
 - (ii) the relevant connection points at which the estimated change in forecast load or forecast generation may occur; and
 - (iii) the estimated change in forecast load or forecast generation in MW or improvements in power factor needed to defer the forecast system limitation;

- **6.1** Network limitations adequacy, security, and asset condition
- **6.1.2** Sub-transmission and distribution feeder capacity limitations
- **6.5** Emerging network limitations maps

Appendix C Network limitations and mitigation strategies

Appendix D Substation forecast and capacity tables

Appendix E Feeder forecast and capacity tables

NER Schedule 5.8 version 235

Report Section

Clause / Sub-Clause

For the purposes of clause 5.13.2(c) of the NER, the following information must be included in a Distribution Annual Planning Report:

(d) for any primary distribution feeders for which a Distribution Network Service Provider has prepared forecasts of maximum demands under clause 5.13.1(d)(1)(iii) and which are currently experiencing an overload, or are forecast to experience an overload in the next two years the Distribution Network Service Provider must set out:

(1)	the location of the primary distribution feeder;	5.6.3 Distribution network voltage
(2)	the extent to which load exceeds, or is forecast to exceed, 100% (or lower utilisation factor, as appropriate) of the normal cyclic rating under normal conditions (in summer periods or winter periods);	limits 6.1.2 Sub-transmission and distribution feeder capacity limitations
(3)	the types of potential solutions that may address the overload or forecast overload; and	6.5 Emerging network limitations maps Appendix C Network limitations and
(4)	where an estimated reduction in forecast load would defer a forecast overload for a period of 12 months, include: (i) estimate of the month and year in which the overload is forecast to occur;	Appendix C Network limitations and mitigation strategies Appendix E Feeder forecast and capacity tables
	(ii) a summary of the location of relevant connection points at which the estimated reduction in forecast load would defer the overload;	
	(iii) the estimated reduction in forecast load in MW needed to defer the forecast system limitation;	

(d1) for any primary distribution feeders for which a Distribution Network Service Provider has prepared forecasts of demand for distribution services by distribution connected units under clause 5.13.1(d1)(3) and which are currently experiencing a system limitation, or are forecast to experience a system limitation in the next two years, the Distribution Network Service Provider must set out:

(1)	the location of the primary distribution feeder;	6.1 Network limitations – adequacy,
(2)	the extent to which demand for distribution services by distribution connected units exceeds, or is forecast to exceed, 100% (or lower utilisation factor, as appropriate) of the normal capacity to provide those distribution services under normal conditions;	security, and asset condition 6.5 Emerging network limitations maps Appendix E Feeder forecast and capacity tables
(3)	the types of potential solutions that may address the system limitation or forecast system limitation;	
(4)	where an estimated reduction in demand for distribution services by distribution connected units would defer a forecast system limitation for a period of 12 months, include: (i) an estimate of the month and year in which the system limitation (ii) a summary of the location of relevant connection points at which the estimated reduction in demand for distribution services by distribution connected units would defer the system limitation; and	
	(iii) the estimated reduction in demand for distribution	

NER	Schedule 5.8 version 235	Report Section			
For t	se / Sub-Clause he purposes of clause 5.13.2(c) of the NER, the wing information must be included in a Distribution ual Planning Report:				
	services by distribution connected units in MW needed to defer the forecast system limitation;				
	for a SAPS enabled network, information on system od for which a potential solution is a regulated SAPS				
(1)	estimates of the location and timing (month(s) and year) of the system limitation; and	Not applicable to Energex Network.			
(2)	a brief discussion of the types of potential stand- alone power systems that may address the system limitation;	-			
` '	high-level summary of each RIT-D project for which ibution has been completed in the preceding year or				
(1)	if the regulatory investment test for distribution is in progress, the current stage in the process;	6.4 Regulatory Investment Test for Distribution (RIT-D) projects			
(2)	a brief description of the identified need;	Appendix C Network limitations and			
(3)	a list of the credible options assessed or being assessed (to the extent reasonably practicable);	mitigation strategies			
(4)	 if the regulatory investment test for distribution has been completed a brief description of the conclusion, including: (i) the net economic benefit of each credible option; (ii) the estimated capital cost of the preferred option; and 				
	(iii) the estimated construction timetable and commissioning date (where relevant) of the preferred option; and				
(5)	any impacts on Network Users, including any potential material impacts on connection charges and distribution use of system charges that have been estimated;				
Distr will r prov	r each identified system limitation which a ribution Network Service Provider has determined require a regulatory investment test for distribution, ide an estimate of the month and year when the is expected to commence;	6.4.2 Foreseeable RIT-D projects			
perio dete	summary of all committed investments to be carried of with an estimated capital cost of \$2 million or mor rmination) that are to address an urgent and unfores se 5.17.3(a)(1), including:	e (as varied by a cost threshold			
(1)	a brief description of the investment, including its purpose, its location, the estimated capital cost of the investment and an estimate of the date (month and year) the investment is expected to become operational;	 5.10 Joint planning 6.4 Regulatory Investment Test for Distribution (RIT-D) projects Appendix C Network limitations and mitigation strategies 			
(2)	a brief description of the alternative options considered by the Distribution Network Service	3			

NER Schedule 5.8 version 235 **Report Section** Clause / Sub-Clause For the purposes of clause 5.13.2(c) of the NER, the following information must be included in a Distribution **Annual Planning Report:** Provider in deciding on the preferred investment, including an explanation of the ranking of these options to the committed project. Alternative options could include, but are not limited to, generation options, demand side options, and options involving other distribution or transmission networks; (h) the results of any joint planning undertaken with a Transmission Network Service Provider in the preceding year, including: (1) a summary of the process and methodology used by 5.10 Joint planning the Distribution Network Service Provider and **5.10.6** Further information on joint relevant Transmission Network Service Providers to planning undertake joint planning; (2) a brief description of any investments that have been planned through this process, including the estimated capital costs of the investment and an estimate of the timing (month and year) of the investment; and (3) where additional information on the investments may be obtained; (i) the results of any joint planning undertaken with other Distribution Network Service Providers in the preceding year, including: (1) a summary of the process and methodology used by **5.10** Joint planning the Distribution Network Service Providers to **5.10.5** Joint planning with other undertake joint planning; **DNSPs** a brief description of any investments that have been (2) planned through this process, including the estimated capital cost of the investment and an estimate of the timing (month and year) of the investment; and (3) where additional information on the investments may be obtained; (j) information on the performance of the Distribution Network Service Provider's network, including: a summary description of reliability measures and (1) 9.1 Reliability measures and standards in applicable regulatory instruments; standards **9.1.3** Reliability compliance process (2) a summary description of the quality of supply 9.1.4 Reliability corrective actions standards that apply, including the relevant codes, standards, and guidelines; 9.2 Service Target Performance Incentive Scheme (STPIS) a summary description of the performance of the (3) 9.4 Guaranteed Service Levels distribution network against the measures and standards described under subparagraphs (1) and (GSL) (2) for the preceding year; **9.5** Worst performing distribution feeders (4) where the measures and standards described under 10.4 Quality of supply subparagraphs (1) and (2) were not met in the preceding year, information on the corrective action

NER	Schedule 5.8 version 235	Report Section				
Claus	se / Sub-Clause					
follo	he purposes of clause 5.13.2(c) of the NER, the wing information must be included in a Distribution all Planning Report:					
	taken or planned;	10.1 Power quality supply standards,				
(5)	a summary description of the Distribution Network Service Provider's processes to ensure compliance with the measures and standards described under subparagraphs (1) and (2); and	codes and guidelines 10.2 Power quality performance 2024-25 10.3 Power quality corrective actions				
(6)	an outline of the information contained in the Distribution Network Service Provider's most recent submission to the AER under the service target performance incentive scheme;	9.2 Service Target Performance Incentive Scheme (STPIS) 9.1.3 Reliability compliance process				
(k) in inclu	formation on the Distribution Network Service Providing:	ider's asset management approach,				
(1)	a summary of any asset management strategy employed by the Distribution Network Service Provider;	2.4 Asset management overview				
(1A)	an explanation of how the Distribution Network Service Provider takes into account the cost of distribution losses when developing and implementing its asset management and investment strategy;	5.4.5 Distribution networks planning criteria				
(2)	a summary of any issues that may impact on the system limitations identified in the Distribution Annual Planning Report that has been identified through carrying out asset management; and	2.4 Asset management overview11 Network challenges and opportunities				
(3)	information about where further information on the asset management strategy and methodology adopted by the Distribution Network Service Provider may be obtained;	2.4.6 Further information 1.6 DAPR enquiries				
	formation on the Distribution Network Service Provion ities, and activities relating to distribution connected					
(1)	 a qualitative summary of: (i) non-network options that have been considered in the past year, including generation from distribution connected units; (ii) key issues arising from applications to connect distribution connected units received in the past year; (iii) actions taken to promote non-network proposals or (for a SAPS enabled network) SAPS proposals in the preceding year, including generation from distribution connected units; and (iv) the Distribution Network Service Provider's plans for demand management and generation from distribution connected units over the forward planning period; 	 7.4 2024-25 Deliverables of the Energex Demand Management program 7.5 Energex demand management program delivery over the next year 11.2.4 Key issues arising from embedded generation applications 				

NER Schedule 5.8 version 235 **Report Section** Clause / Sub-Clause For the purposes of clause 5.13.2(c) of the NER, the following information must be included in a Distribution **Annual Planning Report:** a quantitative summary of: (2) 11.2.4.1 Connection enquiries received (i) connection enquiries received under clause 5.3A.5 and of the total, the number for non-**11.2.4.2** Applications to connect registered DER providers; received (ii) applications to connect received under clause 11.2.4.3 Average time to complete 5.3A.9 and of the total, the number for nonconnection registered DER providers; and (iii) the average time taken to complete applications to connect; and (3) a quantitative summary of: (i) enquiries under clause 5A.D.2 in relation to the connection of micro resource operators or non-registered DER providers; and (ii) applications for a connection service under clause 5A.D.3 in relation to the connection of micro resource operators or non-registered DER providers; (m) information on the Distribution Network Service 12 Information, Communication and Provider's investments in information technology and Operational Technology systems communication systems which occurred in the 12.4 Operational and future preceding year, and planned investments in information technology technology and communication systems related to management of network assets in the forward planning period; and (n) a regional development plan consisting of a map of the Distribution Network Service Provider's network as a whole, or maps by regions, in accordance with the Distribution Network Service Provider's planning methodology or as required under any regulatory obligation or requirement, identifying: sub-transmission lines, zone substations and 6 Overview of network limitations (1) transmission-distribution connection points; and and recommended solutions 6.5 Emerging network limitations (2) any system limitations that have been forecast to maps occur in the forward planning period, including, where they have been identified, overloaded primary distribution feeders (o) the analysis of the known and potential interactions between: (1) any emergency frequency control schemes, or **9.7** Emergency frequency control emergency controls in place under clause \$5.1.8, on schemes and protection systems its network; and (2) protection systems or control systems of plant connected to its network (including consideration of whether the settings of those systems are fit for purpose for the future operation of its network), undertaken under clause 5.13.1(d)(6), including a description of proposed actions to be undertaken to

NER Schedule 5.8 version 235 Clause / Sub-Clause For the purposes of clause 5.13.2(c) of the NER, the following information must be included in a Distribution Annual Planning Report:							
addre	ess any adverse interactions						
	r a SAPS enabled network, information on the Distri ities in relation to DNSP-led SAPS projects including						
(1)	opportunities to develop DNSP-led SAPS projects that have been considered in the past year;	Not applicable to Energex network					
(2)	committed projects to implement a regulated SAPS over the forward planning period; and						
(3)	a quantitative summary of:						
	(i) the total number of regulated SAPS in the network; and						
	(ii) the total number of premises of retail customers supplied by means of those regulated						

(q) the system strength locational factor for each system strength connection point for which it is the Network Service Provider and the corresponding system strength node.

SAPS.

11.6 Customer connections impacting system strength

Table 33: DA cross reference

Dist	Distribution Authority No. D01/99 Report Section							
DAF	PR reporting obligations:							
(DA) 10.2 Safety Net Targets:							
(b)	From 1 July 2014 onwards, the distribution entity will, as part of its Distribution Annual Planning Report, monitor and report on the measures taken to achieve its safety net targets.	5.4.3 Safety Net						
(c)	From 1 July 2015 onwards, the distribution entity will, as part of its Distribution Annual Planning Report, monitor and report on its performance against its safety net targets.	9.6 Safety net target performance						
(DA) 11.2 Improvement Programs Required:							
(a)	From 1 July 2014 onwards, the distribution entity will, as part of its Distribution Annual Planning Report, monitor and report on the reliability of the distribution entity's worst performing distribution feeders;	9 Network reliability 9.5 Worst performing distribution feeders Appendix F Worst performing distribution feeders						
(DA) 14.3 Periodic Reports and Plans:							

Distribution Authority No. D01/99 Report Section DAPR reporting obligations: From 1 July 2014 onwards, the distribution entity must report in its Distribution Annual Planning Report on the implementation of its Distribution Network Planning approach under Clause 8 Distribution Network Planning. **Clause 8: Distribution Network Planning** Subject to clauses 9 Minimum Service Standards, 10 5.4 Network planning criteria Safety Net and 11 Improvement Programs of this authority 9 Network reliability and any other regulatory requirements, the distribution 9.5 Worst performing distribution entity must plan and develop its supply network in accordance with good electricity industry practice, having feeders regard to the value that end users of electricity place on the Appendix F Worst performing quality and reliability of electricity services.

distribution feeders

Appendix C

Network limitations and mitigation strategies

Appendix C Network limitations and mitigation strategies

This section provides details on asset limitations and presents the committed solutions or the types of potential options for each of the limitations.

In comparison to the 2024 DAPR, some projects to address network limitations will have completed the regulatory process, or have entered construction, or have been commissioned. However, some projects identified in the 2024 DAPR have been deferred beyond the forward planning period due to declining growth in demand forecasts. Furthermore, some projects have been re-assessed and subsequently cancelled. This section provides updated information for the forward planning period.

Details on asset limitations and the types of potential options to address each of the limitations are contained in the Distribution System Limitation Template (prepared in accordance with Australian Energy Regulator's (AER) Distribution Annual Planning Report Template) via the following hyperlinks:

- Substations Limitations and Proposed Solutions Capacity Energex 2025.xlsx⁵²
- Substations Limitations and Proposed Solutions Refurbishment Energex 2025.xlsx⁵³
- Sub-Transmission Feeders Limitations and Proposed Solutions Capacity Part 1 -Energex 2025.xlsx⁵⁴
- Sub-Transmission Feeders Limitations and Proposed Solutions Capacity Part 2 -Energex 2025.xlsx⁵⁵
- Sub-Transmission Feeders Limitations and Proposed Solutions Refurbishment -Energex 2025.xlsx⁵⁶

Details on limitations where Energex has committed projects to address can be accessed via the following hyperlinks:

- Substations Limitations and Committed Solutions Energex 2025.xlsx⁵⁷
- Sub-Transmission Feeders Limitations and Committed Solutions Energex 2025.xlsx⁵⁸
- Distribution Feeder Limitations and Committed Solutions Energex 2025.xlsx⁵⁹

⁵²Website:https://www.energex.com.au/ data/assets/excel doc/0008/1841363/Substations Limitations and Proposed Solutions Capacity - Energex 2025.xlsx

⁵³Website: https://www.energex.com.au/ data/assets/excel doc/0008/1841354/Substations Limitations and Proposed Solutions Refurbishment - Energex 2025.xlsx

⁵⁴Website:https://www.energex.com.au/ data/assets/excel doc/0004/1841332/Sub-

<u>Transmission Feeders Limitations and Proposed Solutions Capacity Part 1 - Energex 2025.xlsx</u>

⁵⁵ Website: https://www.energex.com.au/ data/assets/excel doc/0003/1841295/Sub-Transmission Feeders Limitations and Proposed Solutions Capacity Part 2 - Energex 2025.xlsx

⁵⁶Website: https://www.energex.com.au/ data/assets/excel doc/0006/1841262/Sub-

Transmission Feeders Limitations and Proposed Solutions Refurbishment - Energex 2025.xlsx

⁵⁷Website: https://www.energex.com.au/ data/assets/excel_doc/0009/1841364/Substations_Limitations_ns_and_Committed_Solutions - Energex_2025.xlsx

⁵⁸Website: https://www.energex.com.au/ data/assets/excel doc/0005/1841333/Sub-

Transmission Feeders Limitations and Committed Solutions - Energex 2025.xlsx

⁵⁹Website: https://www.energex.com.au/ data/assets/excel doc/0003/1841367/Distribution Feeder Limitations and Committed Solutions - Energex 2025.xlsx

Details on limitations where Energex does not plan to address within the forward planning period can be obtained via the hyperlinks below:

- Sub-transmission Limitations not addressed Energex 2025.xlsx⁶⁰
- Distribution Feeder Limitations-Not-Addressed Energex 2025.xlsx.⁶¹

159

⁶⁰Website: https://www.energex.com.au/ data/assets/excel_doc/0010/1841365/Limitations_not_addressed - Energex_2025.xlsx

⁶¹Website: https://www.energex.com.au/ data/assets/excel doc/0011/1841366/Distribution Feeder Limitations Not Addressed - Energex 2025.xlsx

Appendix D

Substation forecast and capacity tables

Appendix D Substation forecast and capacity tables

The Substations Forecast and Capacity Tables is a summary of planning information for all existing and committed future bulk supply and zone substations. These are made available in spreadsheet format via the following hyperlinks:

- Bulk Substations Load Forecast Energex 2025.xlsx⁶²
- Zone Substations Load Forecast Energex 2025.xlsx⁶³
- Joint Owned Bulk Supply and Zone Substations Load Forecast Energex 2025.xlsx⁶⁴

In general, the summary includes only substations that supply multiple customers. Customer owned substations and substations dedicated to single large customers are not included.

GIS based mapping including forecasts and limitations are available via Energex's latest <u>interactive</u> maps 2025⁶⁵.

D:1 Supporting notes

Each summary sheet contains a brief description of the substation, including its location, land area, construction type, installed transformers and capacity of known Embedded Generation connected to the substation. Localities give a general view of the areas serviced by the substation. Load categories indicate the type of loads supplied. Growth rates for the zone substations provide a projection of the expected growth rates for the next five years for planning purposes.

With respect to growth rates:

- None of the bulk supply substations directly supply customers, therefore there is no growth rates provided for these substations; and
- Large individual or block loads (existing and new) are treated on an individual basis and not listed in these substation summaries, but these are factored into load forecasts.

The latest compensated peak demand is displayed along with the typical daily compensated load profile. In addition, the compensated descriptor refers to the slightly reduced transformer load experienced when available capacitors are in service. Entries in the major loads section indicate there are significant or large customers connected to the substation. Both summer and winter profiles are presented where available. Where a substation has less than 12 months of metering data available, such as small substations and newly established substations, the graphs and the information against these fields is either blank or not applicable (N/A).

⁶²Website: https://www.energex.com.au/ data/assets/excel doc/0009/1841148/Bulk Substations Lo ad Forecast - Energex 2025.xlsx

⁶³Website: https://www.energex.com.au/ data/assets/excel doc/0020/1841150/Zone Substations L oad Forecast - Energex 2025.xlsx

⁶⁴Website: https://www.energex.com.au/__data/assets/excel_doc/0010/1841149/Joint_Owned_Bulk_S upply and Zone Substations Load Forecast - Energex 2025.xlsx

⁶⁵ Website: https://www.energex.com.au/about-us/company-reports,-plans-and-charters/distribution-annual-planning-report/maps/seq/dapr-map-2025

D:2 Peak load forecast and capacity tables

A definition of terms for these tables is shown in Table 34, below. These tables show information about the substation's customer category, transformer capacity, including emergency cyclic capacity and normal cyclic capacity, load at risk, and the compliance of each substation with its security standard. To assess whether a substation meets its security standard, four possible risk periods are considered: winter day, winter night, summer day and summer night. The highest risk period for each season is displayed for each year of the forward planning period.

A total of eight peak, reconciled and compensated load forecasts have been used in the analysis: 50 PoE summer (day & night); 50PoE winter (day & night); 10PoE summer (day & night); and 10PoE winter (day & night). The summer forecasts are based on summer 2024/25 starting values, and the winter forecasts are based on winter 2025 starting values. Both sets of forecasts include load transfers expected from committed projects with the proposed timings scheduled in the Program of Work (PoW) as of May 2025. Substation capacities include the single contingency emergency cyclic capacity and the total substation normal cyclic capacity corresponding to the plant present at the start of the risk period. These ratings have also been adjusted for known committed project proposals.

The forecast and capacity cut-off date for the winter season is 1 June of each year, and for the summer season is 1 December of each year. For example, 2025 winter forecast includes all committed projects with a proposed commissioning date up to 1 June 2025, and the 2025/26 summer forecast includes all committed projects with a proposed commissioning date up to 1 December 2025.

The security standard applicable to a substation is based on the customer category. The peak risk period is the one with the highest calculated load at risk for normal or contingency conditions. Load at risk is calculated using the forecast loads, the planned substation capacity, and the capacity of the network to allow the transfer of load away from the substation to other sources of supply based on the substation security standard criteria. A detailed explanation of the derivation of load at risk is provided in Chapter 5. If there is no load at risk, the substation meets the security standard.

Although transformers are usually the limiting factor for a substation's capacity, there are other significant items of plant, such as cables and switchgear that can also restrict capacity. Load sharing between parallel transformers can also be limited due to operational constraints (e.g. split bus configurations to manage fault levels) or differing transformer characteristics (e.g. tapping range or impedance differences). Both of these factors have been considered in the production of these tables.

Table 34: Appendix D: Definition of terms – peak load forecast and capacity tables

Term	Definition
Peak Risk Period	The time period over which the load is highest (Day/Night).
NCC Rating (MVA)	Normal Cyclic Capacity – the total capacity with all network components and equipment in service.
	The maximum permissible peak daily loading for a given load cycle that plant can supply each day of its life. Taking impedance mismatch into consideration, it is considered the maximum rating for a transformer to be loaded under normal load conditions.
Contracted non-network (MVA)	The amount of Embedded Generation and contracted curtailed demand management capacity available within the supply area of a substation during peak times. The impacts of these have been incorporated into the load forecasts. Solar PV connections are not included in the reported figure.
10PoE Load (MVA)	Peak load forecast with 10% probability of being exceeded (one in every 10 years will be exceeded). Based on normal expected growth rates & weather corrected starting loads.
LARn (MVA)	Security standard load at risk under system normal condition, expressed in MVA.

Term	Definition
LARn (MW)	Security standard load at risk under system normal condition, expressed in MW.
Power Factor at Peak Load	Compensated power factor at 50 PoE Load. Capacitive compensation is switched according to the size of the capacitor banks installed at the substation; compensation is generally limited to prevent a substation from going into leading power factor.
ECC Rating (MVA)	Emergency Cyclic Capacity – the long-term firm delivery capacity under a single contingent condition. The maximum permissible peak emergency loading for a given load cycle that an item of plant can supply for an extended period of time without unacceptable damage. For substations with multiple transformers, the ECC is the minimum emergency cyclic capacity of all transformer combinations taking impedance mismatches into consideration, with one transformer off line.
50PoE Load (MVA)	Peak load forecast with 50% probability of being exceeded (one in every two years will be exceeded). Based on normal expected growth rates and weather corrected starting loads.
50PoE Load > 95% (MVA)	The amount of load greater than 95% 50PoE Load. (50 PoE Load – 0.95 x 50PoE Load)
Hours PA > 95% Peak Load	The number of hours per annum (maximum over the last 3 years) where the load exceeded 95% of the peak 50PoE demand.
Raw LAR (MVA)	The amount of load exceeding ECC rating. (50 PoE Load – ECC Rating)
2-Hour Rating (MVA)	Two-Hour Emergency Capacity (2HEC) – the short term or firm delivery capacity under a single contingent condition. The maximum permissible peak emergency loading for a given load cycle that an item of plant can supply up to two hours without causing unacceptable damage. For substations with multiple transformers, the 2HEC is the minimum two-hour emergency rating of all transformer combinations taking impedance mismatches into consideration, with one transformer offline.
Auto Trans Avail (MVA)	SCADA or automatically controlled load transfers that can be implemented within one minute.
Remote Trans Avail (MVA)	Load transfers that can be implemented through SCADA switching procedures by the network control officer. It is assumed that this can generally be achieved within 30 minutes excluding complex or time –consuming restoration procedures.
Manual Trans Avail (MVA)	Load transfers can also be deployed via manually controlled switchgear locally by field staff. It is assumed that the implementation of manual switching procedures to isolate the faulted portion of the network to restore supply to healthy parts of the network can be fully implemented within three hours (urban) or four hours (rural). Load transfer capabilities for each zone substation are calculated
	using load flow studies, considering the thermal ratings and voltage stability of the network. The transfer amount applies throughout the forward planning period.
Mobile Plant Avail (MVA)	The capacity of mobile substation or mobile generation that can be deployed within the timeframe prescribed by the security standard. The maximum allowable mobile generator capacity is limited to 4 MVA for urban and 10 MVA for rural. The maximum mobile substation capacity is 15 MVA.

Term	Definition
POPS	Plant Overload Protection Scheme consists of several applications which continuously monitor specific items of plant for overload conditions. If overload conditions are detected and validated, POPS will initiate predefined actions in order to relieve the overload condition.
Bus Configuration	An indication of the electrical configuration of the substation 11 kV bus (e.g., split bus or solid bus)
Capacity for Embedded Generation (MVA)	The total capacity for embedded generation to transfer power from lower voltage network to higher voltage network with all network components and equipment in service.
N-1 Capacity for Embedded Generation (MVA)	The firm capacity for embedded generation to transfer power from lower voltage network to higher voltage network under a single contingent condition.
LARc (MVA)	Security standard load at risk for single contingent conditions.
LARc (MW)	Estimated generation / load reduction required to defer the forecast system limitation. This is the security standard load at risk for a single contingency, expressed in MW.
Customer Category	For security standard application, the general type of customer a substation or feeder supplying the area.

Appendix E

Feeder forecast and capacity tables

Appendix E Feeder forecast and capacity tables

The feeders forecast and capacity tables contains the capacity and forecast loads on the 132kV, 110kV, 33kV and 11kV feeders in the Energex network.

These are made available in spreadsheet format via the following hyperlinks:

- Distribution Feeder Summer and Winter Forecast Energex 2025.xlsx⁶⁶
- 33kV Feeders Summer Forecast Energex 2025.xlsx⁶⁷
- 33kV Feeders Winter Forecast Energex 2025.xlsx⁶⁸
- 110kV and 132kV Feeders Summer Forecast Energex 2025.xlsx⁶⁹
- 110kV and 132kV Feeders Winter Forecast Energex 2025.xlsx70
- Distribution Feeder DER Forecast Energex 2025.xlsx⁷¹
- 33kV Feeders Minimum Day Forecast Energex 2025.xlsx⁷²
- 110kV Feeders Minimum Day Forecast Energex 2025.xlsx⁷³.

In general, the tables contain only feeders that supply multiple customers. Dedicated feeders that supply single large customers are not included.

GIS based mapping including forecasts and limitations are available via Energex's latest <u>interactive</u> maps 2025.⁷⁴

E:1 Supporting notes on feeders

The following sections list the 132kV, 110kV, 33kV and 11kV feeders, their forecast loads, and their capacity limitations. The feeder loads are calculated from load flow results using forecast substation demands. For the transmission and sub-transmission feeders, load flow studies are conducted for system normal and single contingency situations. For 11kV feeders, studies are conducted under normal conditions. The limitation tables provide details on feeders having a capacity limitation and present the most likely solution to address the limitation.

166

⁶⁶Website: https://www.energex.com.au/ data/assets/excel_doc/0010/1841158/Distribution_Feeder_Summer_and_Winter_Forecast - Energex_2025.xlsx

⁶⁷Website:https://www.energex.com.au/__data/assets/excel_doc/0004/1841152/33kV_Feeders_Summer Forecast - Energex 2025.xlsx

⁶⁸Website: https://www.energex.com.au/ data/assets/excel doc/0005/1841153/33kV Feeders Winte r Forecast - Energex 2025.xlsx:

⁶⁹Website: https://www.energex.com.au/ data/assets/excel_doc/0006/1841154/110kV_and_132kV_F eeders Summer Forecast - Energex 2025.xlsx

⁷⁰Website: https://www.energex.com.au/ data/assets/excel doc/0007/1841155/110kV and 132kV F eeders Winter Forecast - Energex 2025.xlsx

⁷¹Website:https://www.energex.com.au/ data/assets/excel_doc/0009/1841157/Distribution_Feeder_DER_Forecast_- Energex_2025.xlsx

⁷²Website: https://www.energex.com.au/__data/assets/excel_doc/0003/1841151/33kV_Feeders_Minimum_Day_Forecast - Energex_2025.xlsx_

⁷³Website: https://www.energex.com.au/ data/assets/excel doc/0008/1841156/110kV Feeders Mini mum Day Forecast - Energex 2025.xlsx

⁷⁴ Website: https://www.energex.com.au/about-us/company-reports,-plans-and-charters/distribution-annual-planning-report/maps/seq/dapr-map-2025

E:2 Peak load forecast and capacity tables

A definition of terms for these tables is shown in Table 35, below. These tables show information about the feeder capacity, load at risk, and the compliance of each feeder with its security standard. To assess whether a feeder meets its security standard, four possible risk periods are considered: winter day, winter night, summer day and summer night. The highest risk period for each season is displayed for each year of the forward planning period.

The forecast and capacity cut-off date for the winter season is 1 June of each year, and for the summer season is 1 December of each year. For example, the 2025 winter forecast includes all committed projects with a proposed commissioning date up to 1 June 2025, and the 2025/26 summer forecast includes all committed projects with a proposed commissioning date up to 1 December 2025.

Assessment of 132kV, 110kV and 33kV feeders is performed under four possible risk periods: winter day, winter night, summer day and summer night.

Peak, reconciled, compensated load forecasts have been used in the 132kV, 110kV and 33kV feeder analyses, with 50PoE forecast load used for single contingency studies, and 10PoE forecast load used for system normal studies. The analysis includes load transfers expected from committed projects with the proposed timings scheduled in the Program of Work (PoW) as of May 2025.

Feeder capacities are shown for ECC and NCC. These ratings have also been adjusted for known committed project proposals. All load transfers associated with contingent condition include acceptable feeder voltage profiles.

Although the conductor rating is generally the limiting factor for feeder capacity, there are other significant items of plant, such as the feeder circuit breaker, that can also restrict capacity. Furthermore, other factors such as voltage constraints and load sharing between parallel underground feeders can sometimes de-rate the capacity of the feeders due to thermal characteristic constraints. Each of these factors has been taken into account in the production of the forecast tables.

Interconnected or feeders that supply multiple customers are examined in the following tables. Feeders exclusively supplying a customer owned substation or dedicated to a customer are not included in these tables.

E:2.1 Distribution (11kV) feeder studies

For the 11kV feeder studies, the 50PoE and 10PoE load forecasts are assessed based on the 2025 winter and 2024/25 summer starting values and include some load transfers expected from approved project proposals as of May 2025. The forecast winter loads are for the winter season following the summer quoted in that financial year. The 50PoE load forecasts and the normal cyclic capacity of feeder rating are then used to determine limitations. Where projects have been approved to augment a feeder, the augmented rating has been used in the analysis. Permanent remediation strategies to correct network limitations beyond those resolved via approved projects have not been modelled in the study as these are developed year by year.

Instead of load at risk calculations, the analysis compares feeder utilisation under normal conditions against the acceptable levels of utilisation specific to each feeder. The target utilisation assigned to each feeder depends on its configuration, with radial feeders tending to have higher utilisations of about 80% and balanced three feeder meshes such as those typically found in the CBD having target utilisations of 67%. This approach accommodates the different purposes to which feeders may be employed (e.g., dedicated to single point customer loads, ties, or dual feeders). This utilisation is calculated according to the following:

- Utilisation (Normal Conditions) = 50PoE Load / NCC Rating
- The conditions used to determine security are as follows:
- If Utilisation > Target Utilisation ⇒ site does not meet security standard.

Table 35: Appendix E: Definition of terms - feeder capacity and forecast tables

Term	Definition
NCC Rating (A)	Normal Cyclic Capacity - the total capacity with all network components and equipment intact.
	This is the maximum permissible peak daily loading for a given load cycle that a feeder can supply each day of its life. For overhead feeders, the NCC is the conductor rating with an assumed 1m/s wind, orthogonal to the line. For underground cables, the NCC assumes that there are sufficient temperature and current operating margins from the thermal inertia of the cable and its surroundings.
10 PoE Load (A)	Peak load forecast with 10% probability of being exceeded (one in every 10 years will be exceeded). Based on normal expected growth rates and weather corrected starting loads.
Power Factor (System Normal)	Lowest power factor along the feeder at 10 PoE Peak Load.
ECC Rating (A)	Emergency Cyclic Capacity – the long-term firm delivery capacity under single contingency conditions.
	Some underground cables are installed in close proximity to other circuits and are normally de-rated to allow for the heat generated by the adjacent cables. ECC is the higher capacity available when any adjacent circuits have been unloaded. For overhead conductors which do not benefit from this phenomenon, the ECC is synonymous with the NCC.
50 PoE Load [N-1] (A)	Peak load forecast with 50% probability of being exceeded (one in every two years will be exceeded) following the worst case single contingency (N-1) event. Based on normal expected growth rates & weather corrected starting loads.
Hours PA > 95% Peak Load	The forecast number of hours per annum where the load exceeded 95% of the peak 50 PoE demand. This information is not readily available for every feeder without significant analysis being undertaken. As such, this has only been provided on selected feeders.

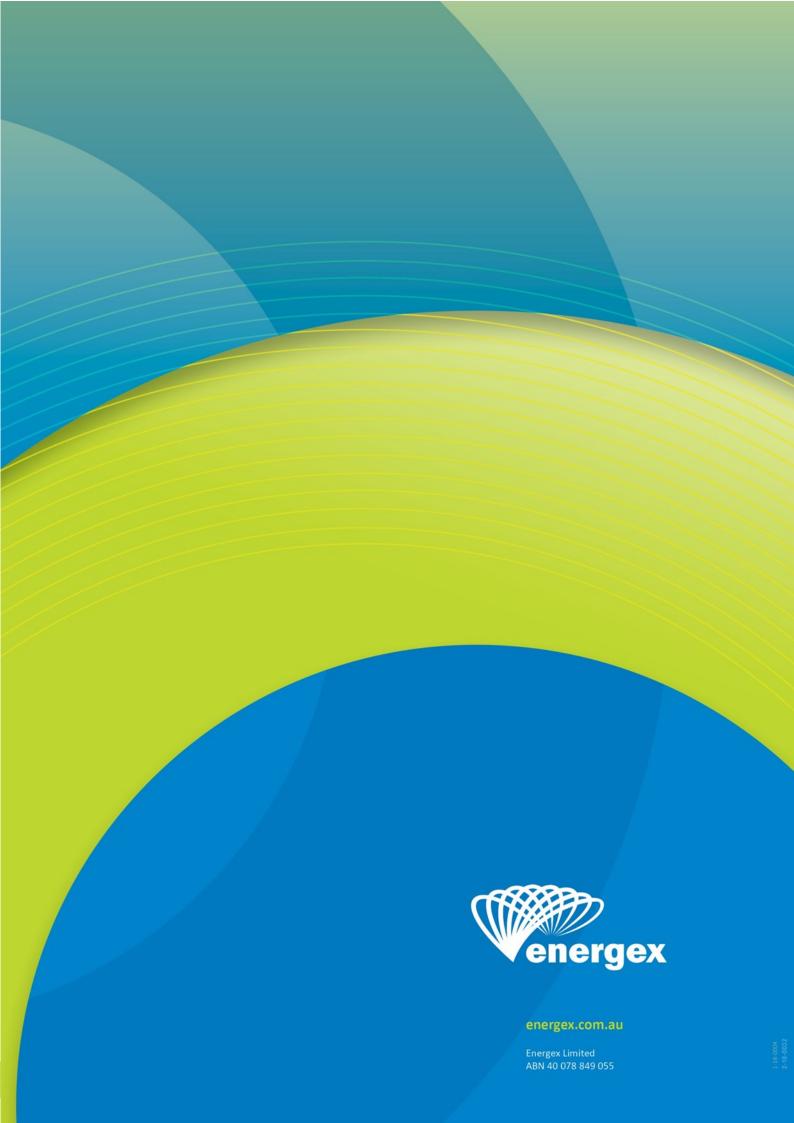
Term	Definition
Transfers (A)	This is the total amount of load transfers that are available following the worst case network contingency. This includes automatic transfers that are controlled automatically through SCADA and are generally implemented within a minute, load transfers that can be implemented through screen switching by a network controller, manual transfers that are deployed via manually controlled switchgear locally by field staff, and mobile generation which can be deployed by field staff by moving generation to specific sites. It should be noted under the Safety Net in the Distribution
	Authority, it is generally assumed that 4MVA (21A @ 110kV, 70A @ 33kV) of generation is available for Urban feeders to meet this criteria and 10MVA (52A @110kV, 175A @ 33kV) is available for Rural feeders. These values have been used as a default in the forecast tables where these are sufficient to reduce the 50PoE load below the ECC rating. Where the load is still above the ECC rating, specific load transfers have been calculated for the feeder to determine whether the Safety Net criteria is met."
Customer Category	For security standard application, the general type of customer a sub-transmission, or transmission feeder is supplying.
Voltage (kV)	The nominal voltage of the feeder.
Feeder Capacity for DCU (A)	Capacity for feeder to accept supply from distribution connected units (DCU)
Minimum day load under System Normal (A)	Forecast load at midday of the forecast minimum load day, including the impacts of distribution connected units, under System Normal conditions.
Minimum day load under N-1 Contingency (A)	Forecast load at midday of the forecast minimum load day, including the impacts of distribution connected units, under single contingency conditions.

Appendix F

Worst performing distribution feeders

Appendix F Worst performing distribution feeders 2024-25

Table 36: List of worst performing feeders


Feeder Name	SAIDI & SAIFI Performance	Feeder Length (km)	Customer Number	Feeder Category	2024-25 MSS SAIDI Limit	3 Year Average SAIDI	2024-25 MSS SAIFI Limit	3 Year Average SAIFI	Improvement Program Criteria Met
CNA8A	Pending Review	57	2,500	SR	218	6,373	2.46	51.29	SAIDI and SAIFI Performance
PMBTR1H	Pending Review	0	9	SR	218	4,071	2.46	1.01	SAIDI Performance
KCY6A	Pending Review	62	694	SR	218	3,852	2.46	31.65	SAIDI and SAIFI Performance
GCAKRA6	Pending Review	3	1	UR	106	2,281	1.26	2.00	SAIDI Performance
NPDTR1	Pending Review	0	1	SR	218	2,157	2.46	1.67	SAIDI Performance
KCY5A	Pending Review	141	763	SR	218	1,978	2.46	12.58	SAIDI and SAIFI Performance
F101	Pending Review	0	1	SR	218	1,725	2.46	1.33	SAIDI Performance
LNCTR1	Pending Review	0	1	SR	218	1,706	2.46	4.00	SAIDI Performance
MGP13A	Reviewed 2023-24	107	1,103	SR	218	1,500	2.46	5.79	SAIDI and SAIFI Performance
GBN3	Reviewed 2016-17	39	125	SR	218	1,495	2.46	4.42	SAIDI Performance
DBS13A	Pending Review	2	5	UR	106	1,322	1.26	0.33	SAIDI Performance
KCY2	Reviewed 2021-22	0	1	SR	218	1,189	2.46	5.31	SAIDI and SAIFI Performance
BTN4	Pending Review	2	3	UR	106	1,180	1.26	1.56	SAIDI Performance
KCY2A	Pending Review	122	461	SR	218	1,109	2.46	8.35	SAIDI and SAIFI Performance
WHO9	Reviewed 2020-21	69	68	SR	218	1,061	2.46	2.73	SAIDI Performance

Feeder Name	SAIDI & SAIFI Performance	Feeder Length (km)	Customer Number	Feeder Category	2024-25 MSS SAIDI Limit	3 Year Average SAIDI	2024-25 MSS SAIFI Limit	3 Year Average SAIFI	Improvement Program Criteria Met
CBT8A	Reviewed 2013-14	40	954	SR	218	1,057	2.46	4.66	SAIDI Performance
WFD1B	Reviewed 2021-22	82	320	SR	218	994	2.46	4.65	SAIDI Performance
RWD1	Reviewed 2021-22	228	525	SR	218	884	2.46	4.87	SAIDI Performance
COR26A	Reviewed 2015-16	98	933	SR	218	798	2.46	6.19	SAIDI and SAIFI Performance
CCY17A	Pending Review	60	716	SR	218	792	2.46	4.21	SAIDI Performance
BMT1	Reviewed 2016-17	132	679	SR	218	789	2.46	4.54	SAIDI Performance
MLY6	Reviewed 2017-18	57	781	SR	218	784	2.46	5.40	SAIDI and SAIFI Performance
WMR2	Reviewed 2016-17	35	249	SR	218	777	2.46	3.77	SAIDI Performance
IPL2A	Reviewed 2023-24	118	300	SR	218	769	2.46	3.75	SAIDI Performance
AMR3	Reviewed 2022-23	114	417	SR	218	757	2.46	4.12	SAIDI Performance
COR23A	Reviewed 2015-16	112	615	SR	218	713	2.46	4.74	SAIDI Performance
WFD3A	Pending Review	20	391	SR	218	705	2.46	3.24	SAIDI Performance
GBN2	Reviewed 2015-16	53	255	SR	218	679	2.46	3.23	SAIDI Performance
NBR15A	Reviewed 2014-15	30	572	SR	218	678	2.46	3.32	SAIDI Performance
CRY2A	Reviewed 2022-23	65	719	SR	218	672	2.46	5.23	SAIDI and SAIFI Performance
WMR1	Reviewed 2023-24	87	853	SR	218	671	2.46	4.18	SAIDI Performance
TGW2	Reviewed 2020-21	94	242	SR	218	663	2.46	2.55	SAIDI Performance
COR22A	Pending Review	49	783	SR	218	663	2.46	3.75	SAIDI Performance

Feeder Name	SAIDI & SAIFI Performance	Feeder Length (km)	Customer Number	Feeder Category	2024-25 MSS SAIDI Limit	3 Year Average SAIDI	2024-25 MSS SAIFI Limit	3 Year Average SAIFI	Improvement Program Criteria Met
CRB25A	Reviewed 2023-24	76	1,314	SR	218	653	2.46	2.22	SAIDI Performance
EMD2	Reviewed 2022-23	41	477	SR	218	651	2.46	5.31	SAIDI and SAIFI Performance
GBN4	Reviewed 2016-17	152	765	SR	218	642	2.46	3.45	SAIDI Performance
SDM1	Reviewed 2018-19	74	200	SR	218	638	2.46	3.24	SAIDI Performance
RIS4	Reviewed 2023-24	24	1,041	SR	218	632	2.46	3.95	SAIDI Performance
IPL3	Reviewed 2023-24	133	459	SR	218	616	2.46	4.99	SAIDI and SAIFI Performance
RIS2	Reviewed 2022-23	39	3,502	SR	218	616	2.46	3.08	SAIDI Performance
GYN3A	Reviewed 2021-22	133	830	SR	218	596	2.46	3.42	SAIDI Performance
MCW4	Pending Review	18	1,301	SR	218	593	2.46	3.18	SAIDI Performance
SMF3A	Reviewed 2022-23	43	831	SR	218	584	2.46	2.28	SAIDI Performance
PWC4	Reviewed 2016-17	95	1,935	SR	218	579	2.46	3.13	SAIDI Performance
KMR25A	Reviewed 2023-24	61	1,131	SR	218	570	2.46	2.52	SAIDI Performance
CRY6A	Reviewed 2023-24	74	723	SR	218	550	2.46	4.79	SAIDI Performance
KWH1	Reviewed 2023-24	59	583	SR	218	540	2.46	2.80	SAIDI Performance
CMY1	Reviewed 2019-20	87	259	SR	218	529	2.46	2.09	SAIDI Performance
MLY1	Reviewed 2016-17	83	894	SR	218	526	2.46	4.27	SAIDI Performance
WMR4	Reviewed 2021-22	17	52	SR	218	523	2.46	1.63	SAIDI Performance
CPD1	Pending Review	98	421	SR	218	516	2.46	1.67	SAIDI Performance

Feeder Name	SAIDI & SAIFI Performance	Feeder Length (km)	Customer Number	Feeder Category	2024-25 MSS SAIDI Limit	3 Year Average SAIDI	2024-25 MSS SAIFI Limit	3 Year Average SAIFI	Improvement Program Criteria Met
GGR2	Reviewed 2017-18	22	127	SR	218	514	2.46	2.01	SAIDI Performance
FDS1	Pending Review	132	611	SR	218	512	2.46	3.08	SAIDI Performance
GYS6A	Reviewed 2022-23	115	794	SR	218	511	2.46	2.51	SAIDI Performance
IBL2	Reviewed 2022-23	108	786	SR	218	508	2.46	2.89	SAIDI Performance
BMT5	Reviewed 2022-23	37	319	SR	218	507	2.46	2.83	SAIDI Performance
TWT12A	Reviewed 2016-17	44	1,052	SR	218	505	2.46	3.10	SAIDI Performance
BRD3B	Reviewed 2023-24	45	802	SR	218	502	2.46	3.73	SAIDI Performance
QBIQBX8	Pending Review	0	1	UR	106	491	1.26	1.67	SAIDI Performance
TBV4	Reviewed 2015-16	61	739	SR	218	490	2.46	3.15	SAIDI Performance
BDB33A	Pending Review	4	7	UR	106	487	1.26	1.38	SAIDI Performance
FDS4	Reviewed 2015-16	132	390	SR	218	485	2.46	2.90	SAIDI Performance
RIS1	Reviewed 2023-24	14	1,383	SR	218	484	2.46	2.10	SAIDI Performance
KWA12A	Pending Review	13	2,296	UR	106	483	1.26	2.12	SAIDI Performance
LLY1	Reviewed 2015-16	122	511	SR	218	483	2.46	2.70	SAIDI Performance
GGR3	Pending Review	29	75	SR	218	477	2.46	2.03	SAIDI Performance
KWA2A	Reviewed 2017-18	9	872	UR	106	476	1.26	2.38	SAIDI Performance
KWH2	Pending Review	116	847	SR	218	475	2.46	2.74	SAIDI Performance
YDA1B	Reviewed 2014-15	18	475	SR	218	467	2.46	2.99	SAIDI Performance

Feeder Name	SAIDI & SAIFI Performance	Feeder Length (km)	Customer Number	Feeder Category	2024-25 MSS SAIDI Limit	3 Year Average SAIDI	2024-25 MSS SAIFI Limit	3 Year Average SAIFI	Improvement Program Criteria Met
TBV3	Reviewed 2014-15	23	381	SR	218	461	2.46	2.99	SAIDI Performance
SMF12A	Reviewed 2017-18	74	958	SR	218	456	2.46	1.85	SAIDI Performance
EZRRWD4	Pending Review	72	279	SR	218	450	2.46	2.41	SAIDI Performance
BTN3	Reviewed 2024-25	53	1,066	SR	218	447	2.46	2.67	SAIDI Performance
TGW3	Reviewed 2019-20	122	230	SR	218	439	2.46	2.30	SAIDI Performance
IBL1	Pending Review	0	1	UR	106	424	1.26	2.00	SAIDI Performance
RBA37A	Pending Review	16	1,385	UR	106	417	1.26	1.24	SAIDI Performance
TTF81	Pending Review	7	183	UR	106	362	1.26	2.09	SAIDI Performance
KCY1A	Pending Review	8	683	SR	218	336	2.46	11.47	SAIFI Performance
CHL4	Reviewed 2024-25	8	1,953	UR	106	285	1.26	2.69	SAIFI Performance
KLG2A	Pending Review	15	1,349	UR	106	242	1.26	2.93	SAIFI Performance
KMR29A	Pending Review	8	882	UR	106	241	1.26	2.58	SAIFI Performance
KCY3A	Pending Review	1	3	UR	106	167	1.26	2.67	SAIFI Performance
KRA10	Pending Review	7	1,223	UR	106	161	1.26	2.72	SAIFI Performance

